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Pixel classification

So far, we have studied a local search algorithm for the smooth pixel
classification problem.

On the one hand, this algorithm is easy to implement and has
straight-forward generalizations, e.g., to the case of more than two
classes.

On the other hand, it does not necessarily solve smooth pixel
classification with two classes to optimality.

Next, we will reduce the smooth pixel classification problem with
two classes to the well-known minimum st-cut problem that can
be solved exactly and efficiently.
The notes are organized as follows

» Definition of the minimum st-cut problem

» Submodularity

» Reduction of the smooth pixel classification problem



Definition 1

A 5-tuple N = (V, E, s,t,7) is called a network iff (V, E) is a directed
graph and s €V andt € V and s #t and v : E — R{.

The nodes s and t are called the source and the sink of N, respectively.

For any edge e € E, . is called the capacity of e in N.



Definition 2
Let (V, E) be a directed graph. Let s € V andt € V and s # t.
» X CV is called an st-cutset of (V,E) iffs€ X andt ¢ X.

» Y C E is called an st-cut of (V, E) iff there exists an st-cutset X
such thatY = {fvw e E|ve X Aw ¢ X}.
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Definition 3

The instance of the Minimum st-Cut Problem w.r.t. a network
N = (V,E,s,t,y) is to

min Z Ty (1 = Zay) Yo (1)
z€{0,1}V vweE
subject to x, =1 (2)



Definition 4

A lattice (S, =) is a set S, equipped with a partial order <, such that
any two elements of S have an infinum and a supremum w.r.t. <.

Example. ({0,1}2, <) with < :={(s,1) € S x S | 81 <t1 Asy <ta}.

(1,1)

(1,0) \ (0,1)

(0,0)

For any s,t € {0,1}2,

sup(s, t) = (max{sy, t1}, max{ss,ta2})
inf(s,t) = (min{sy,t1}, min{ss, t2})



Definition 5
A function f : S — R is called submodular w.r.t. a lattice (S, <) iff

Vs,t €S [f(inf(s, 1)) + f(sup(s,t)) < f(s) + f() - (4)



Lemma 1
For any f : {0,1}?> — R, the following statements are equivalent.
1. f is is submodular w.r.t. the the lattice ({0,1}?, <)

2. £(0,0) + f(1,1) < f(1,0) + f(0,1)

3. The unique form
Cp + C{1}T1 + C{2} T2 + C{1,2} T1 T2

of f is such that cgy 2y < 0.



Proof.

» £(0,0)+ f(1,1) < f(1,0) + f(0,1) is the only condition in

Vs, t €S

f(inf(s, 1)) + f(sup(s, 1)) < f(s) + f(t)

which is not generally true. Thus, (1.) is equivalent to (2.).

» We have

Therefore,

=y =+ C{2}

C{1,2}y = f(lv 1) - f(lv 0) - f(ov 1) + f(0,0)

and thus, (2.) is equivalent to (3.).



Lemma 2

The sum of finitely many submodular functions is submodular.



Lemma 3

For every f : {0,1}2 — R, there exist unique ap € R and
a1, a1, az,as, a1, a1y € R such that

aiay = azaz = aizaip =0
and

Vo € {0,1}% f(z)= ao
+arz; +a7(l — 1)
+ agxs + az(1 — x2)

+ a197172 4 agp(1 — 1) 22 .



Proof.
» Comparison of (6) with the unique form
¢p +c1yr1 + ¢y T2 + ¢(1,2) 122
yields
ap +ai+az = ¢y

a; — a1 = ¢y

az — ag + aiz = C{2}
ai2 — iz = €{1,2}

» By these equations (from bottom to top), (5) and ¢ define a
uniquely.



Lemma 4 (Kolmogorov and Zabih)

For every submodular f : {0,1}?> — R and its unique coefficient ag € R
from Lemma 3,

i = 8
IGI%EP ft “ ( )

is equal to the weight of a minimum st-cut in the graph below whose
edge weights are the (unique, non-negative) coefficients from Lemma 3.

a1 ag

aia

Moreover, f is minimal at & € {0,1}? iff {j € {1,2} | &, =0} is a
minimum st-cutset of the above graph.



Proof.
» Submodularity of f implies a12 =0 in (7), by Lemma 1 and (5).
» Comparison of the four possible minima of f,

=ag +aj +az + ajs

=ag+ a1 +az+a ,



Definition 6

For any smooth pixel classification problem

min D oot D b= vul

c{0,1}V
velo}" ey (v,w}eE

o(y)

the induced minimum st-cut problem is defined by the network
(V',E' s, t,7y) such that V' =V U {s, t},

E' ={(s,v) € V"?| ¢, >0} U{(v,t) € V"?| ¢, <0}
U{(v,w) € V'?| {v,w} € E}
and y: E' — R{ such that

V(s,v) € E':  ysw) = Co
V(v,t) € E": ) = —Co
V{’U, w} ckb: Yw,w) = V(ww) = C/{v,w} .



Lemma 5

For any smooth pixel classification problem w.r.t. a pixel grid graph

G = (V, E) and the induced minimum st-cut problem with the network
(V' E' s,t,7), §:V — {0,1} is an optimal pixel classification iff

{v €V | ¢, = 0} is an optimal st-cutset.

Proof (sketch). The function ¢ is submodular, by Lemma 2 and ¢ > 0.
The statement holds by Lemma 3 and the fact that for all y € {0,1}":

ey) = Z Co Yo + Z C/{'U,w} (Ho(1 = yw) + (1 = yo)yw)

veV {v,w}€E



Suggested self-study:

» Solve the smooth pixel classification problems
—2y1 + 3y2 + ¢|y1 — yo| for ¢ € {1,5} via the induced minimum
st-cut problem

» Implement a solver for the smooth pixel classification problem using
any existing implementation of any algorithm for the minimum
st-cut problem?.

» Apply this algorithm to the pixel classification problem from the
previous lecture

» Compare the classifications y € {0,1}" and objective values o(y)
found by local search with those found by minimum st-cuts

» Share your results using OPAL.

L Alternatively, use any algorithm for computing a maximum st-flow, e.g. https://
www.boost.org/doc/libs/1_48_0/1ibs/graph/doc/edmonds_karp_max_flow.html,
and consider the minimum st-cutset of all nodes reachable from the source node in
the residual network.


https://www.boost.org/doc/libs/1_48_0/libs/graph/doc/edmonds_karp_max_flow.html
https://www.boost.org/doc/libs/1_48_0/libs/graph/doc/edmonds_karp_max_flow.html

