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Conditional Graphical Models Il

Contents. This part of the course introduces algorithms for supervised
structured learning of conditional graphical models.
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On the one hand, supervised structured learning of conditional graphical models
whose factors are linear functions is a convex optimization problem.

Thus, it can be solved exactly by means of the steepest descent algorithm with
a tolerance parameter € € R{":

0:=0
repeat
d:= VeL(Hg(l’, ~),y)
n = argmin, g L(Hyp_ya(z,-),y) (line search)
0:=0—nd
if [|d]] < e
return 6
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On the other hand, computing the gradient naively takes time O(2|S‘):
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69j
1 x 4
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Computing the gradient requires that we compute

» the partition function

Z(z,0) = Z o (06 ")

y'e{0,1}5

(1)
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» for every factor f € F, the so-called factor marginal
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The challenge is to sum the function

over assignments of 0 or 1 to linearly many (2) or all (1) variables y'.

Defining

we obtain

7/’6(177?!/) .— o (0:8(=yY)

Vro(Tr,ys(p) = e~ Oerler s

bo(z,y') ——(0:6(@y")
— e~ Zrerl0ps(@russ))

_ H e (Oeslerysin))
fer

= [ %reryss) -

fer

(4)

()
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Thus, the challenge in (2) and (1) is to compute a sum of a product of functions.

Specifically:
Z(z,0)= > ] ¥relruse) (9)
y'€{0,1}5 feF
1
pys(f)\?ﬁ@(yfg(f) | x>6) = Z(ZL‘ 9) Z H wfﬂ(wfvys(ﬁ) (10)
’ s\ 5() {0,135\ fEF

» One approach to tackle this problem is to sum over variables recursively.

» In order to avoid redundant computation, Kschischang et al. (2001) define
partial sums.
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Definition (Kschischang et al. (2001)) For any variable node s € S and any

factor node f € F, the functions
Msf,Mpss: {0,1} = R,

called messages, are defined such that for all y; € {0, 1}:

ms—f(ys) = H mygr—ys(Ys)

FrER(\{f}
myss(ys) = Y. Ype(zrusey) [ me—sr(use)
YS(H\{s} s'eS(H\{s}

(11)

(12)

(13)
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Lemma. If the factor graph is acyclic, messages are defined recursively by (12)
and (13), beginning with the messages from leaves. Moreover, for any s € S and
any f € F:

Z H myr—s(Ys) (14)

ys€{0,1} f'€F(s)

1
Pysplx.0Ws) | ©,0) = 7. )wfe zr,ysr) || me—r(ys)  (15)
E5()

The recursive computation of messages is known as message passing.
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Summary

» For conditional graphical models whose factor graph is acylic, the
supervised structured learning problem can be solved efficiently by means of
the steepest descent algorithm and message passing.

» For conditional graphical models whose factor graph is cyclic, the definition
of messages is cyclic as well. The partition function and marginals cannot
be computed by message passing in general.

» A heuristic without guarantee of correctness or even convergence is to
initialize all messages as normalized constant functions and to update
messages according to some schedule, e.g., synchronously. This heuristic is
commonly known as loopy belief propagation.
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Contents. This part of the course introduces algorithms for supervised
structured inference with conditional graphical models.
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The inference problem w.r.t. a conditional graphical model has the form of an
unconstrained binary optimization problem:

argmin Hy(z,y) (16)
ye{0,1}S

It is NP-hard. (This can be shown, e.g., by reduction of binary integer
programming, which is one of Karp’s 21 problems).
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We consider transformations that change one decision at a time:

Definition. For any s € S, let flip,: {0,1}° — {0,1}* such that for any
y€{0,1}° and any t € S:

flip,[y)(t) = {1 T = 17

Yt otherwise

The greedy local search algorithm w.r.t these transformations is known as
Iterated Conditional Modes, or ICM (Besag 1986).

y' =icm(y)

choose s € argmin Hy(z, flip,/ [y]) — Ho(z,y)
s'esS
if Ho(=, flip, [y]) < Ho(z,y)
y' = iem(flip, [y])
else
Yy =y
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» The inference problem consists in computing the minimum of a sum of
functions:

argmin Hy(z,y)
ye{0,1}5

= argmin Z hyo(xy,ys(r)) (18)
ye{0,1}5 ycp

» This problem is analogous to that of computing the sum of a product of
functions (from the previous lecture) in that both (R, min,+) and (R, +,-)
are commutative semi-rings.

» This analogy is sufficient to transfer the idea of message passing, albeit
with messages adapted to the (R, min, +) semi-ring:
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Definition. (Kschischang 2001) For any variable node s € S and any factor
node f € F, the functions

HPs—fof—st {071} —-R P (19)

called messages, are defined such that for all y, € {0,1}:

psop(ys) = Y ppros(ys)

FEFON S}

(20)
pp—ss(ys) = min holzr,yspn) + D Harsp(ys)
s\ (s} €101} N s eS(H\{s}

(21)
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Lemma. If the factor graph is acyclic, messages are defined recursively by (20)
and (21), beginning with the messages from leaves. Moreover, for any s € S:

argmin Hy(z,y)
ye{0,1}9

= min heo(xy,
y€{0,1}5 erF f ( f yS(f))

= min > ppo.(ys) (22)

ys€{0,1} Frer(s)

Proof. Analogous to that of Lemma 18 in the lecture notes.
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Summary

» For conditional graphical models whose factor graph is acylic, the inference
problem can be solved efficiently by means of min-sum message passing.

» For conditional graphical models whose factor graph is cyclic, one local
search algorithm for the inference problem is known as Iterated
Conditional Modes (ICM).
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