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Conditional Graphical Models

Contents. This part of the course is about supervised structured learning of
conditional graphical models.
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Conditional Graphical Models

Definition. For any factor graph G = (S, F,E), a function H : {0, 1}S → R is
said to factorize w.r.t. G iff, for every f ∈ F , there exists a function a function
hf : {0, 1}Sf → R, called a factor of H, such that

∀y ∈ {0, 1}S : H(y) =
∑
f∈F

hf (ySf ) . (1)

Example: A function H : {0, 1}S → R factorizes w.r.t. the factor graph

0̄ 1̄ 2̄

01 120 1 2

S

F

iff there exist suitable functions h0, h01, h1, h12, h2 such that, for any
y ∈ {0, 1}S : H(y) = h0(y0̄) + h1(y1̄) + h2(y2̄) + h01(y0̄, y1̄) + h12(y1̄, y2̄).



4/13

Conditional Graphical Models

Definition. A tuple (S, F,E, {Xf}f∈F ,Θ, {hf}f∈F ) is called a conditional
graphical model with attribute space X :=

∏
f∈F Xf and parameter space Θ

iff the following conditions hold:

▶ (S, F,E) is a factor graph

▶ Θ ̸= ∅
▶ For every f ∈ F :

▶ Xf is non-empty, called the attribute space of f

▶ hf : Θ → RXf×{0,1}Sf
, called a factor.

The family H : Θ → RX×{0,1}S such that

∀θ ∈ Θ ∀x ∈ X ∀y ∈ {0, 1}S : Hθ(x, y) =
∑
f∈F

hfθ(xf , ySf ) (2)

is called the family of energy functions of the conditional graphical model.
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Conditional Graphical Models

Family of Functions

▶ We consider a conditional graphical model (S, F,E, {Xf}f∈F ,Θ, {hf}f∈F )
and its family H of energy functions.

▶ We assume that Θ is a finite-dimensional, real vector space, i.e., there exists
a finite, non-empty set J and Θ = RJ .

▶ We assume that every function hf is linear in Θ, i.e., for every f ∈ F , there
exists a φf : Xf × {0, 1}Sf → RJ such that for any xf ∈ Xf , any
ySf ∈ {0, 1}Sf and any θ ∈ Θ:

hfθ(xf , ySf ) = ⟨θ, φf (xf , ySf )⟩ (3)
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Conditional Graphical Models

For convenience, we define ξ : X × {0, 1}S → RJ such that for any x ∈ X and
any y ∈ {0, 1}S :

ξ(x, y) =
∑
f∈F

φf (xf , ySf ) (4)

Thus, we obtain for any θ ∈ Θ, any x ∈ X and any y ∈ Y :

Hθ(x, y) =
∑
f∈F

hfθ(xf , ySf )

=
∑
f∈F

⟨θ, φf (xf , ySf )⟩

=

〈
θ,

∑
f∈F

φf (xf , ySf )

〉
= ⟨θ, ξ(x, y)⟩ (5)
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Conditional Graphical Models

X

YΘj

j ∈ J

Probabilistic Model

▶ Let X be a random variable whose value is an element x ∈ X of the
attribute space.

▶ Let Y be a random variable whose value is a combination of decisions
y ∈ {0, 1}S

▶ For any j ∈ J , let Θj a random variable whose value is a parameter θj ∈ R
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Conditional Graphical Models

Factorization

▶ We assume:

P (X ,Y,Θ) = P (Y | X ,Θ)P (X )
∏
j∈J

P (Θj) (6)

▶ Thus:

P (Θ | X ,Y) =
P (X ,Y,Θ)

P (X ,Y)

=
P (Y | X ,Θ)P (X )

∏
j∈J P (Θj)

P (X ,Y)

∝ P (Y | X ,Θ)
∏
j∈J

P (Θj) (7)
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Conditional Graphical Models

Distributions

Definition. For any conditional graphical model, the partition function
Z : X ×Θ → R and Gibbs distribution p : X × {0, 1}S ×Θ → [0, 1] are defined
by the forms

Z(x, θ) =
∑

y∈{0,1}S
e−Hθ(x,y) (8)

p(y, x, θ) =
1

Z(x, θ)
e−Hθ(x,y) (9)

We consider a σ ∈ R+ and

pY|X ,Θ(y, x, θ) =
1

Z(x, θ)
e−Hθ(x,y) (10)

∀j ∈ J : pΘj (θj) =
1

σ
√
2π

e−θ2j /2σ
2

. (11)
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Conditional Graphical Models

Lemma. Estimating maximally probable parameters θ, given attributes x and
decisions y, i.e.,

argmax
θ∈RJ

pΘ|X ,Y(θ, x, y)

is identical to the supervised structured learning problem w.r.t. L, R and λ such
that

L(Hθ(x, ·), y) = Hθ(x, y) + lnZ(x, θ) (12)

= Hθ(x, y) + ln
∑

y′∈{0,1}S
e−Hθ(x,y

′) (13)

= ⟨θ, ξ(x, y)⟩+ ln
∑

y′∈{0,1}S
e−⟨θ,ξ(x,y′)⟩ (14)

R(θ) = ∥θ∥22 (15)

λ =
1

2σ2
(16)
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Conditional Graphical Models

Lemma: The first and second partial derivatives of the logarithm of the partition
function have the forms

∂

∂θj
lnZ =

1

Z(x, θ)

∑
y′∈{0,1}S

(−ξj(x, y
′))e−⟨θ,ξ(x,y′)⟩ (17)

= Ey′∼pY|X ,Θ
(−ξj(x, y

′)) (18)

∂2

∂θj ∂θk
lnZ = Ey′∼pY|X ,Θ

(ξj(x, y
′)ξk(x, y

′))

− Ey′∼pY|X ,Θ
(ξj(x, y

′))Ey′∼pY|X ,Θ
(ξk(x, y

′))

= COVy′∼pY|X ,Θ
(ξj(x, y

′), ξk(x, y
′)) (19)

Lemma: Supervised structured learning of a conditional graphical model is a
convex optimization problem.
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Lemma: Estimating maximally probable decisions y, given attributes x and
parameters θ, i.e.

argmax
y∈{0,1}S

pY|X ,Θ(x, y, θ) (20)

is identical to the structured inference problem with Ĥ(x, y) = Hθ(x, y).
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Conditional Graphical Models

Summary. Supervised structured learning of conditional graphical models whose
factors are linear functions is a convex optimization problem.


