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Conditional Graphical Models

Contents. This part of the course is about supervised structured learning of
conditional graphical models.
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Conditional Graphical Models

Definition. For any factor graph G = (S, F, E), a function H : {0,1}° — R is
said to factorize w.r.t. G iff, for every f € F, there exists a function a function
hy:{0,1}5f = R, called a factor of H, such that

vy €{0,1}%: H(y) =Y hy(ys,) - (1)

fer

Example: A function H : {0,1}® — R factorizes w.r.t. the factor graph

0 1 2

F
0 01 1 12 2

iff there exist suitable functions ho, ho1, h1, hi2, he such that, for any
y € {0,1}%: H(y) = ho(ys) + ha1(y1) + h2(y3) + ho1 (yo, y1) + P2 (1, v2).
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Conditional Graphical Models

Definition. A tuple (S, F,E,{Xf}scr,©,{hs}rer) is called a conditional
graphical model with attribute space X := HfEF Xy and parameter space ©
iff the following conditions hold:

» (S,F,E) is a factor graph
> OA£D

» For every f € F:
» X is non-empty, called the attribute space of f

S
> hy: 0 — RXAOU called a factor.

The family H : © — RX*{%13% gych that

VGG@VxEXVyG{O,I}S: ngy th@ :Ef,ysf (2)
feF

is called the family of energy functions of the conditional graphical model.
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Conditional Graphical Models

Family of Functions

We consider a conditional graphical model (S, F, E,{Xf}ser,©,{hs}rcr)
and its family H of energy functions.

We assume that © is a finite-dimensional, real vector space, i.e., there exists
a finite, non-empty set J and © = R,

We assume that every function hy is linear in O, i.e., for every f € F, there
exists a p; : X; x {0,1}°F — R’ such that for any z; € Xy, any

ys,; €10, 1}5¢ and any 6 € ©:

heo(zs,ys,) = (0, ¢¢(xf,ys,)) (3)
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Conditional Graphical Models

For convenience, we define £ : X x {0,1}° — R’ such that for any € X and
any y € {0,1}°:

£(x7y) = wa(xf,ysf) (4)
feF
Thus, we obtain for any § € ©, any x € X and any y € Y:

Hy(z,y) = > hrolzs,ys;)

feF

= Z <97 @f(xﬁ ys‘f)>

feF

= <97 Z ‘pf(xfzysf)>

feF

= (0,¢(z,y)) ()
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Conditional Graphical Models

jeJ

©; O—

X

Probabilistic Model

» Let X be a random variable whose value is an element z € X of the

attribute space.

» Let ) be a random variable whose value is a combination of decisions

y€{0,1}°

» For any j € J, let ©; a random variable whose value is a parameter §; € R
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Conditional Graphical Models

Factorization

» We assume:
P(x,,0) = P(Y | X,0) P(X)[] P(®, (6)
JjEJ
» Thus:

P(X,Y,0)

POIED= " y)

Py |x.0) [ r©)) (7)
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Conditional Graphical Models

Distributions

Definition. For any conditional graphical model, the partition function

Z: X x © — R and Gibbs distribution p: X x {0,1}% x © — [0,1] are defined

by the forms

Z(x,0) = Z e Ho@w)

ye{0,1}5

1 e~ Ho(@y)

p(y,z,0) = m

We consider a o € R™ and
pyixe(y,©,0) = ——e

. 1 02 /252
VjeJ: pe,(0;) = —=e 05/207

(8)

(10)

(11)
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Conditional Graphical Models

Lemma. Estimating maximally probable parameters 6, given attributes x and
decisions y, i.e.,

argmax  pe|x,y(0,,y)
[23:34

is identical to the supervised structured learning problem w.r.t. L, R and X such
that

L(Ho(z,+),y) = Ho(z,y) + In Z(,0) (12)
= Hyp(z,y) +In Z e~Ho@y) (13)
y'€{0,1}°
= (0.€@ )+ Y e PV (14)
y'€{0,1}°
R(0) = |10]I3 (15)
1
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Conditional Graphical Models

Lemma: The first and second partial derivatives of the logarithm of the partition
function have the forms

0 1 Yo (0:€(z,y")

—InZ= > —&(x,y'))e Y 17

a9, Z(x,0) y,e{m}s( 1) ()
= Eypyn 0 (=&, y)) (18)

2

2 = By npy p o &2,y )k (2,9))

- Ey/NPy\X,@ (é‘j(‘r, y/))]Ey’prw,@ (é‘k(‘r7 y/))
= Covy/r\‘pypg)@(gj(x7yl)7£k(w7yl)) (19)

90, 00y,

Lemma: Supervised structured learning of a conditional graphical model is a
convex optimization problem.
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Lemma: Estimating maximally probable decisions y, given attributes = and
parameters 6, i.e.

argmax  py|x,e(z,y,0) (20)
y€{0,1}%

is identical to the structured inference problem with f[(x,y) = Ho(z,y).
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Conditional Graphical Models

Summary. Supervised structured learning of conditional graphical models whose
factors are linear functions is a convex optimization problem.
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