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Semi-supervised and Unsupervised Learning (Recap)

So far, we have considered

▶ learning problems w.r.t. labeled data (S,X, x, y) where, for every s ∈ S,
a label ys ∈ {0, 1} is given

▶ inference problems w.r.t. unlabeled data (S,X, x) where no label is given
and every combination of labels y : S → {0, 1} is a feasible solution

Next, we will consider learning problems where not every label is given and
inference problems where not every combination of labels is feasible. Unlike
before, the data we look at in both problems coincides, consisting of tuples
(S,X, x,Y) where Y ⊆ {0, 1}S is a set of feasible labelings. In particular:

▶ Y = {0, 1}S is the special case of unlabeled data

▶ |Y| = 1 is the special case of labeled data

▶ Non-trivial choices of Y will allow us to encode finite structures such as
maps (for classification), equivalence relations (for clustering) and orders
(for ordering).
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Semi-supervised and Unsupervised Learning (Recap)

Definition. For

▶ any finite, non-empty set S, called a set of samples,

▶ any non-empty set X, called an feature space,

▶ any x : S → X

▶ any non-empty set Y ⊆ {0, 1}S , called a set of feasible labelings,

the tuple T = (S,X, x,Y) is called constrained data.
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Semi-supervised and Unsupervised Learning (Recap)

Example. We reduce the problem of learning and inferring partitions to the
problem of learning and inferring decisions by defining constrained data
(S,X, x, Y ) such that

S =
(
A
2

)
(1)

Y =
{
y :

(
A
2

)
→ {0, 1}

∣∣∣ ∀a ∈ A ∀b ∈ A \ {a} ∀c ∈ A \ {a, b} :

y{a,b} + y{b,c} − 1 ≤ y{a,c}

}
(2)
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Semi-supervised and Unsupervised Learning (Recap)

Definition. For

▶ any constrained data T = (S,X, x,Y),

▶ any Θ ̸= ∅ and family of functions f : Θ → RX ,

▶ any R : Θ → R+
0 , called a regularizer,

▶ any L : R× {0, 1} → R+
0 , called a loss function

▶ any λ ∈ R+
0 , called a regularization parameter,

the instance of the learning and inference problem w.r.t. T,Θ, f, R, L and λ
has the form

min
y∈Y

inf
θ∈Θ

λR(θ) +
1

|S|
∑
s∈S

L(fθ(xs), ys) . (3)

The special case of one-elementary Y = {ŷ} is called the supervised learning
problem.

The special case of one-elementary Θ = {θ̂} written below is called the
inference problem.

min
y∈Y

∑
s∈S

L(fθ̂(xs), ys) (4)
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Semi-supervised and Unsupervised Learning (Recap)

Special cases of the learning and inference problem:

▶ Semi-supervised learning: Some labels are fixed, i.e.:

∃s ∈ S ∃b ∈ {0, 1} ∀y ∈ Y : ys = b (5)

▶ Unsupervised learning: No label is fixed, i.e.:

∀s ∈ S ∀b ∈ {0, 1} ∃y ∈ Y : ys = b (6)



7/8

Semi-supervised and Unsupervised Learning (Recap)

Remark. The inference problem

min
y∈Y

∑
s∈S

L(fθ̂(xs), ys) (7)

can be stated equivalently with a linear objective function:

argmin
y∈Y

∑
s∈S

L(fθ̂(xs), ys) (8)

= argmin
y∈Y

∑
s∈S

ys L(fθ̂(xs), 1) + (1− ys)L(fθ̂(xs), 0) (9)

= argmin
y∈Y

∑
s∈S

ys (L(fθ̂(xs), 1)− L(fθ̂(xs), 0)︸ ︷︷ ︸
=: cs

(10)

= argmin
y∈Y

∑
s∈S

cs ys . (11)
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Semi-supervised and Unsupervised Learning (Recap)

Summary.

▶ Semi-supervised and unsupervised learning are optimization problems.
▶ Feasible solutions to these optimization problems consist of both:

▶ a labeling y of the samples
▶ a parameter vector θ that defines a function fθ

▶ Even if the parameter vector θ is learned in a supervised manner from
labeled data, the inference problem can be non-trivial due to the constraint
y ∈ Y.


