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Classifying

Contents.

▶ This part of the course introduces the problem of classifying data w.r.t. any
given finite number of classes.

▶ This problem is introduced as an unsupervised learning problem
w.r.t. constrained data whose feasible labelings are characteristic functions
of maps.
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A map φ : A → B is a binary relation φ ⊆ A×B with the properties

∀a ∈ A ∃b ∈ B : (a, b) ∈ φ (1)

∀a ∈ A ∀b, b′ ∈ B : (a, b) ∈ φ ∧ (a, b′) ∈ φ ⇒ b = b′ . (2)

They are characterized by those functions y : A×B → {0, 1} that satisfy

∀a ∈ A :
∑
b∈B

yab = 1 . (3)
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We reduce the problem of learning and inferring maps to the problem of learning
and inferring decisions, by defining constrained data (S,X, x,Y) with

S = A×B (4)

Y =

{
y ∈ {0, 1}S

∣∣∣∣∣ ∀a ∈ A :
∑
b∈B

yab = 1

}
. (5)

More specifically, we consider

▶ a finite, non-empty set V , called a set of features

▶ the feature space X = B × RV such that, for any (a, b) ∈ A×B, the
class label b is the first feature of (a, b), i.e.:

∀a ∈ A ∀b ∈ B ∃x̂ ∈ RV : xab = (b, x̂) (6)

We consider linear functions with a separate set of coefficients for every class
label. Specifically, we consider Θ = RB×V and f : Θ → RX such that

∀θ ∈ Θ ∀b ∈ B ∀x̂ ∈ RV : fθ((b, x̂)) =
∑
v∈V

θbv x̂v = ⟨θb·, x̂⟩ . (7)
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Probabilistic model:

▶ For any (a, b) ∈ A×B, let Xab be a random variable whose value is a
vector xab ∈ B × RV , the feature vector of (a, b).

▶ For any (a, b) ∈ A×B, let Yab be a random variable whose value is a
binary number yab ∈ {0, 1}, called the decision of classifying a as b

▶ For any b ∈ B and any v ∈ V , let Θbv be a random variable whose value is
a real number θbv ∈ R, a parameter of the function we seek to learn

▶ Let Z be a random variable whose value is a subset Z ⊆ {0, 1}A×B called
the set of feasible decisions. For multiple label classification, we are
interested in Z = Y, the set of the characteristic functions of all maps from
A to B.



6/15

Classifying

Xab

Yab

Z

Θbv
v ∈ V a ∈ A

b ∈ B

Probabilistic model: We assume the factorization

P (X,Y, Z,Θ) = P (Z | Y )
∏

(a,b)∈A×B

P (Yab | Xab,Θ)
∏

(b,v)∈B×V

P (Θbv)
∏

(a,b)∈A×B

P (Xab)
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▶ Supervised learning:

P (Θ | X,Y, Z) =
P (X,Y, Z,Θ)

P (X,Y, Z)

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (Z | X,Y )P (X,Y )

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (Z | Y )P (X,Y )

=
P (Y | X,Θ)P (X)P (Θ)

P (X,Y )

∝ P (Y | X,Θ)P (Θ)

=
∏

(a,b)∈A×B

P (Yab | Xab,Θ)
∏

(b,v)∈B×V

P (Θbv)
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▶ Inference:

P (Y | X,Z, θ) =
P (X,Y, Z,Θ)

P (X,Z,Θ)

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (X,Z,Θ)

∝ P (Z | Y )P (Y | X,Θ)

= P (Z | Y )
∏

(a,b)∈A×B

P (Yab | Xab,Θ)
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▶ Sigmoid distribution

∀a ∈ A ∀b ∈ B : pYab|Xab,Θ(1) =
1

1 + 2−fθ(xab)
(8)
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▶ Normal distribution with σ ∈ R+:

∀b ∈ B ∀v ∈ V : pΘbv (θbv) =
1

σ
√
2π

e−θ2bv/2σ
2

(9)
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▶ Uniform distribution on a subset

∀Z ⊆ {0, 1}A×B ∀y ∈ {0, 1}A×B pZ|Y (Z, y) ∝

{
1 if y ∈ Z
0 otherwise

Note that pZ|Y (Y, y) is non-zero iff the relation y−1(1) ⊆ A×B is a map.
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Lemma. Estimating maximally probable parameters θ, given features x and
decisions y, i.e., argmaxθ∈RB×V pΘ|X,Y,Z(θ, x, y,Y) separates into |B|
independent l2-regularized logistic regression problems, each with parameters in
RV .

Proof. Analogous to the case of deciding, we now obtain:

argmax
θ∈RB×V

pΘ|X,Y,Z(θ, x, y,Y)

= argmin
θ∈RB×V

∑
(a,b)∈A×B

(
−yab fθ(xab) + log

(
1 + 2fθ(xab)

))
+

log e

2σ2
∥θ∥22 .

Consider the unique x′ : A×B → RV with ∀(a, b) ∈ A×B : xab = (b, x′
ab).

min
θ∈RB×V

∑
(a,b)∈A×B

(
−yab⟨θb·, x′

ab⟩+ log
(
1 + 2⟨θb·,x

′
ab⟩
))

+
log e

2σ2
∥θ∥22

= min
θ∈RB×V

∑
b∈B

(∑
a∈A

(
−yab⟨θb·, x′

ab⟩+ log
(
1 + 2⟨θb·,x

′
ab⟩
))

+
log e

2σ2
∥θb·∥22

)

=
∑
b∈B

min
θb·∈RV

(∑
a∈A

(
−yab⟨θb·, x′

ab⟩+ log
(
1 + 2⟨θb·,x

′
ab⟩
))

+
log e

2σ2
∥θb·∥22

)
.
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Lemma. For any constrained data as defined above, any θ ∈ RB×V and any
ŷ : A×B → {0, 1}, ŷ is a solution to the inference problem

min
y∈Y

∑
(a,b)∈A×B

L(fθ(xab), yab) (10)

iff there exists an φ : A → B such that

∀a ∈ A : φ(a) ∈ max
b∈B

⟨θb·, x′
ab⟩ (11)

and

∀(a, b) ∈ A×B : ŷab = 1 ⇔ φ(a) = b . (12)
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Proof. ∑
(a,b)∈A×B

L(fθ(xab), yab)

=
∑

(a,b)∈A×B

(L(fθ(xab), 1) yab + L(fθ(xab), 0) (1− yab))

=
∑

(a,b)∈A×B

(L(fθ(xab), 1)− L(fθ(xab), 0)) yab + const.

=
∑

(a,b)∈A×B

(−fθ(xab)) yab

=
∑

(a,b)∈A×B

(−⟨θb·, x′
ab⟩) yab xab = (b, x′

ab)

=
∑
a∈A

∑
b∈B

(−⟨θb·, x′
ab⟩) yab
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Summary.

▶ Classification can be cast as an unsupervised learning problem
w.r.t. constrained data defined such that the feasible labelings are
characteristic functions of maps.

▶ In the special case of supervised learning and the logistic loss function, this
problem separates into as many independent independent logistic regression
problems as there are classes. This is commonly called one-versus-rest
learning.


