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Ordering

Contents.
» This part of the course is about the problem of learning to order a finite set.

» This problem is introduced as an unsupervised learning problem
w.r.t. constrained data.
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Ordering

Definition. A strict order on A is a binary relation < C A X A with the
following properties:

Vae A: —a<a (1)
V{a,b} € (2): a<bxor b<a (2)
V{a,b,c}e(?): a<b N b<c = a<c (3)

Lemma. The strict orders on A are characterized by the bijections
a:{0,...,|A] -1} —» A.

Proof. For any such bijection, consider the order <., such that
Va,be A: a<b & o '(a)<a l(b) . (4)

Lemma. The strict orders on A are characterized by those
y:{(a,b) € AXx A|a#b} — {0,1} that satisfy the following conditions:

Vae AVbe A\{a}: Yar+yYpa=1 (5)
Va€ AVbe A\{a} Ve e A\ {a,b}:  Yab+ Yo — 1 < Yac (6)
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Ordering

We reduce the problem of learning and inferring orders to the problem of
learning and inferring decisions, by defining constrained data (S, X, z,Y") with

S={(a,b) € Ax Al|a#b} (7)
y:{ye{o,l}s’VaeAVbeA\{a}: Yab + Upa = 1
Va € AVbe A\ {a} Ve e A\ {a,b}:

Yav + e — 1 <yac) (8

We consider a finite, non-empty set V, called a set of features, and the feature
space X =RY

We consider linear functions. Specifically, we consider © = R and
f:© — RX such that

VoeovVieR: fo(i)=> 0,y =(0,3) . (9)
veV
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Ordering

Xs

Oy () Ys
veV © ? seS
'
O

Z

Probabilistic model:

» For any (a,b) =s € S = E, let X5 be a random variable whose value is a
vector z; € RV, the feature vector of s.

» For any (a,b) = s € S, let Y, be a random variable whose value is a binary
number y; € {0, 1}, called the decision placing a before b.

» For any v € V, let ©, be a random variable whose value is a real number
0, € R, a parameter of the function we seek to learn.

» Let Z be a random variable whose value is a subset Z C {0,1}° called the
set of feasible decisions. For ordering, we are interested in Z =)/, the set
of characteristic functions of strict orders on A.
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Ordering

Xs

0, O —CE Ys

veV seS

Oz
Probabilistic model: We assume the factorization

P(X,Y,Z,0)=PZ|Y) [[P(Y:]| X:,0) [[P(©.) []P(Xs)

ses veV seS
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Ordering

» Supervised learning:

P(X,Y,Z,0)
P(X,Y,Z)
P(Z|Y)P(Y | X,0) P
P(Z | X,Y)P(X,Y)
_P(ZIY) P(Y | X,0) P(X) P(©)
P(Z|Y)P(X,)Y)
_ P(Y | X,0)P(X) P(©)
P(X,Y)
x P(Y | X,0) P(©)

_HPY|X e) [ P.

veV

PO|X,Y,Z) =
(X) P(©)
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Ordering

» Inference:
P(X,Y, Z,0)
PY'1X,2,0) = ﬁ
_ P(Z|Y)P(Y | X,) P(X) P(©)
- P(X, Z,0)

x P(Z|Y)P(Y | X,0)

=P(Z|Y)]] PV | X, 0)
seS
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Ordering

» Sigmoid distribution

1

T 142 Je(ws) (10)

Vs e S: Py, x,,0(1)

st\xs,@(l)
o
(&)1
T
!
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Ordering

» Normal distribution with o € R™:

pe, (0v)

(11)

YVoeV: po, (6,) = ﬁe—eg/zﬂ
0.4 5
0.2 |
0 ‘ ‘ ‘ ‘ ‘ i
-6 -4 =2 0 2 4
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Ordering

» Uniform distribution on a subset

1 ifyeZ

VZ C{0,1}° Yy € {0,1}° pzyv(Z,y) _
0 otherwise

Note that pzy (Y, y) is non-zero iff the labeling y: S — {0, 1} defines an
order on A.
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Ordering

Lemma. Estimating maximally probable parameters 6, given features x and
decisions y, i.e.,

argmax pe|x,v,z(0,z,y,))
0erRY

is an [2-regularized logistic regression problem.

Proof. Analogous to the case of deciding, we obtain:

argmax pe|x,v,z(0,7,y,Y)

6eRrRY
. @ 1
= argmin Z (fys fo(zs) + log (1 4 2fe( 5>>) + Og2e||9||§ .
0eRV  Cg 20

12/18



Ordering

Lemma. Estimating maximally probable decisions y, given features z, given the
set of feasible decisions ), and given parameters 6, i.e.,

argmax pwx,z,e(%%% 0) (12)
ye{0,1}5

assumes the form of the linear ordering problem:

orgmin ;(49,%))% (13)

subject to Va€ AVbe A\{a}: Yab+Ypa =1 (14)
Va € AVbe A\ {a} Vc € A\ {a,b}:

Yab + Yoo — 1 < Yac (15)

Theorem. The linear ordering problem is NP-hard.

The linear ordering problem has been studied intensively. A comprehensive survey
is by Marti and Reinelt (2011). Pioneering research is by Grotschel (1984).
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We define two local search algorithms for the linear ordering problem.

For simplicity, we define ¢ : S — R such that
VseS: co=—(0,zs) (16)

and write the (linear) cost function ¢ : {0,1}° — R such that

Yy e {0,1}%:  o(y) = coys (17)

seS
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Ordering

Greedy transposition algorithm:
» The greedy transposition algorithm starts from any initial strict order.

» It searches for strict orders with lower objective value by swapping pairs of
elements

Definition. For any bijection «: {0,...,|A| — 1} — A and any
g,k €40,...,|A] — 1}, let transpose;, [o] the bijection obtained from « by
swapping a; and ay, i.e.

(693 if :j
Vi€ {0,...,|A[—1}: transpose[a](l) = o; ifl=k . (18)

«; otherwise

15/18



Ordering

o' = greedy-transposition(a)

choose (j, k) € argmin ¢(yrasPoseini @y _ ()
0<j/ <k’ <|A]|
if @(ytranspose‘jk[a]) _ (p(ya) <0
o := greedy-transposition(transpose ; [a])
else

o =«
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Ordering

Greedy transposition using the technique of Kernighan and Lin (1970)

o’ = greedy-transposition-kl (a)

0

a’ =
50 :=0

Jo :={0,...,|A| — 1}
t:=0

repeat

choose (j, k) € argmin ¢(y
{G" k) eTE i <k}
= transpose;, [a¢]
t41 t
Sep1i= ey ) —e(y* ) <0
Jeq1 = Je \ {4, k}

attl:

t:=t4+1
until |J¢| < 2
+
t := min argmin >
t'€{0,...,|A|} T=0
i
if > 6 <0
=0 B
o = greedy-transposition-kl(at)
else
o =«

transposej,k/ [a

t
h - e

(build sequence of swaps)

(move a; and ay, only once)

(choose sub-sequence)

(recurse)

(terminate)
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Ordering

Summary.

» Learning and inferring orders on a finite set A is an unsupervised learning
problem w.r.t. constrained data whose feasible labelings characterize the
strict orders on A.

» The supervised learning problem can assume the form of l>-regularized
logistic regression where samples are pairs (a,b) € A2 such that a # b and
decisions indicate whether a < b.

» The inference problem assumes the form of the NP-hard linear ordering
problem

» Local search algorithms for tackling this problem are greedy transposition
and greedy transposition using the technique of Kernighan and Lin.
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