Machine Learning I

Jannik Irmai, David Stein, Bjoern Andres

Machine Learning for Computer Vision TU Dresden

https://mlcv.cs.tu-dresden.de/courses/24-winter/ml1/

Winter Term 2024/2025

Contents. This part of the course is about the supervised learning of binary decision trees.

- \triangleright We introduce the problem as a specialization of supervised learning by defining labeled data, a family of functions, a regularizer and a loss function.
- \triangleright We prove that the problem is NP-hard, by relating it to the exact cover by 3-sets problem.

We consider labeled data with **binary features**. More specifically, we consider some finite, non-empty set V , called the set of features, and labeled data $T=(S,X,x,y)$ such that $X=\{0,1\}^{V}.$ Hence:

Example.

Definition. A tuple $(V, Y, D, D', d^*, E, \delta, v, y)$ is called a V-variate Y-valued binary decision tree (BDT) if and only if the following conditions hold:

- 1. $V \neq \emptyset$ is finite (called the set of **variables**)
- 2. $Y \neq \emptyset$ is finite (called the set of **values**)
- 3. $(D\cup D',E)$ is a finite, non-empty directed binary tree with root d^*
- 4. every $d \in D'$ is a leaf
- 5. $\delta: E \rightarrow \{0, 1\}$
- 6. every $d \in D$ has precisely two out-edges, $e = (d, d'), e' = (d, d'')$, such that $\delta(e) = 0$ and $\delta(e') = 1$
- 7. $v: D \rightarrow V$
- 8. $y\colon D'\to Y$

Definition. For any BDT $(V, Y, D, D', d^*, E, \delta, v, y)$, any $d \in D$ and any $j \in \{0,1\}$, let $d_{\downarrow j} \in D \cup D'$ the unique node such that $e = (d, d_{\downarrow j}) \in E$ and $\delta(e) = j.$

Definition. For any BDT $\theta = (V, Y, D, D', d^*, E, \delta, v, y)$ and any $d \in D \cup D'$, the tuple $\theta[d]=(V,Y,D_2,D_2',d,E',\delta',v',y')$ is called the **binary decision** subtree of θ rooted at d iff

- ▶ $(D_2 \cup D'_2, E')$ is the subtree of $(D \cup D', E)$ rooted at d
- \blacktriangleright δ', v' and y' are the restrictions of δ, v and y to the subsets D_2 , D_2' and E'

Lemma. For any BDT $\theta = (V, Y, D, D', d^*, E, \delta, v, y)$ and any $d \in D \cup D'$, the binary decision subtree $\theta[d]$ is itself a V-variate Y-valued BDT.

Definition. For any BDT $\theta = (V, Y, D, D', d^*, E, \delta, v, y)$, the function defined by θ is the $f_\theta: \{0,1\}^V \rightarrow Y$ such that $\forall x \in \{0,1\}^V$:

$$
f_{\theta}(x) = \begin{cases} y(d^*) & \text{if } D = \emptyset \\ f_{\theta[d_{\downarrow 0}^*]}(x) & \text{if } D \neq \emptyset \land x_{v(d^*)} = 0 \\ f_{\theta[d_{\downarrow 1}^*]}(x) & \text{if } D \neq \emptyset \land x_{v(d^*)} = 1 \end{cases}
$$

$$
= \begin{cases} y(d^*) & \text{if } D = \emptyset \\ (1 - x_{v(d^*)}) f_{\theta[d_{\downarrow 0}^*]}(x) + x_{v(d^*)} f_{\theta[d_{\downarrow 1}^*]}(x) & \text{otherwise} \end{cases}
$$

Remark. The set Θ of *V*-variate $Y = \{0, 1\}$ -valued BDTs can be identified with a subset of V -variate disjunctive normal forms.

Definition. For any BDT $\theta = (V, Y, D, D', d^*, E, \delta, v, y)$, the **depth** of θ is the $R(\theta) \in \mathbb{N}$ such that

$$
R(\theta) = \begin{cases} 0 & \text{if } D = \emptyset \\ 1 + \max\{R(\theta[d_{\downarrow 0}^*]), R(\theta[d_{\downarrow 1}^*])\} & \text{otherwise} \end{cases} \tag{1}
$$

 $\textsf{Definition.}$ For any labeled data $T=(S,X,x,y)$ with $X=\{0,1\}^{V}$, the set Θ of all V -variate $\{0,1\}$ -valued BDTs, the family $f:\Theta \rightarrow \{0,1\}^X$ of functions defined by these BDTs, the depth R of BDTs as a regularizer, the 0-1-loss L and any $\lambda \in \mathbb{R}_0^+$:

▶ The instance of the supervised learning problem of BDTs has the form

$$
\min_{\theta \in \Theta} \quad \lambda R(\theta) + \sum_{s \in S} L(f_{\theta}(x_s), y_s) \tag{2}
$$

▶ The separation problem of BDTs has the form

$$
\inf_{\theta \in \Theta} R(\theta) \tag{3}
$$

subject to $\forall s \in S : f_{\theta}(x_s) = y_s$ (4)

▶ For any $m \in \mathbb{N}$, the separability problem of BDTs is to decide whether there exists a BDT $\theta \in \Theta$ such that

$$
R(\theta) \le m \tag{5}
$$

$$
\forall s \in S: \quad f_{\theta}(x_s) = y_s \quad . \tag{6}
$$

Remark. separability \leq_p separation \leq_p supervised learning¹.

 $1\leq p$: Karp reduction.

Next, we show that *separability* is NP-hard by reducing the exact cover by 3-sets problem, using a construction by Haussler (1988).

 $\mathsf{Definition}.$ Let S be any set and $\Sigma \subseteq 2^S.$ Σ is called a cover of S if and only if

$$
\bigcup_{\sigma \in \Sigma} \sigma = S \tag{7}
$$

A cover of S is called exact if and only if

$$
\forall \{\sigma, \sigma'\} \in \left(\begin{matrix} \Sigma \\ 2 \end{matrix}\right): \quad \sigma \cap \sigma' = \emptyset \ . \tag{8}
$$

Definition. Let S be any set and $\Sigma \subseteq 2^S$. Deciding whether there exists a $\Sigma' \subseteq \Sigma$ such that Σ' is an exact cover of S is called the instance of the \mathbf{exact} cover problem w.r.t. S and Σ . If, in addition, $|S|$ is an integer multiple of 3 and any $U \in \Sigma$ is such that $|U| = 3$, the instance of the exact cover problem wrt. S and Σ is also called the instance of the exact cover by 3-sets problem wrt. S and Σ .

Proof. For any instance (S', Σ) of the exact cover by 3-sets problem and the $n \in \mathbb{N}$ such that $|S'| = 3n$, we construct the instance of the separability problem of BDTs such that

\n- $$
V = \Sigma
$$
\n- $S = S' \cup \{0\}$
\n- $x : S \to \{0,1\}^{\Sigma}$ such that $x_0 = 0$ and
\n- $\forall s \in S' \ \forall \sigma \in \Sigma$: $x_s(\sigma) = \begin{cases} 1 & \text{if } s \in \sigma \\ 0 & \text{otherwise} \end{cases}$ \n
\n- $y : S \to \{0,1\}$ such that $y_0 = 0$ and $\forall s \in S' : y_s = 1$.
\n- $m = n$
\n

We show that the instance the exact cover problem has a solution iff the instance of the separability problem of BDTs has a solution.

 (\Rightarrow) Let $\Sigma' \subseteq \Sigma$ a solution to the instance of the exact cover problem.

Consider any order on Σ' and the bijection $\sigma': n \to \Sigma'$ induced by this order.

We show that the BDT θ depicted below solves the instance of the separability problem of BDTs.

The BDT satisfies $R(\theta) = m$.

The BDT decides the labeled data correctly because

$$
\blacktriangleright f_{\theta}(x_0) = 0 = y_0
$$

At each of the m interior nodes, three additional elements of S' are mapped to 1. Thus, all $3m$ many elements $s \in S'$ are mapped to 1. That is $\forall s \in S' : f_{\theta}(x_s) = 1 = y_s.$

 (\Leftarrow) Let $\theta = (V, Y, D, D', d^*, E, \delta, \sigma, y')$ a BDT that solves the instance of the separability problem of BDTs.

W.l.o.g., we assume, for any interior node $d \in D$, that $d_{\downarrow 1}$ is a leaf and $y'(d_{\downarrow 1}) = 1.$

Hence, θ is of the form depicted below.

Therefore:

$$
\forall x \in X: \quad f_{\theta}(x) = \begin{cases} 1 & \text{if } \exists j \in N: x(\sigma_j) = 1 \\ 0 & \text{otherwise} \end{cases}
$$
 (10)

Thus,

$$
\forall s \in S: \quad f_{\theta}(x_s) = \begin{cases} 1 & \text{if } \exists j \in N: s \in \sigma_j \\ 0 & \text{otherwise} \end{cases} \tag{11}
$$

by definition of x in [\(9\)](#page-10-0).

Consequently,

$$
\bigcup_{j=0}^{N-1} \sigma_j = S' \quad , \tag{12}
$$

by definition of y such that $\forall s \in S': y_s = 1$.

Moreover, $N = m$, because

$$
3m = |S'| \stackrel{(12)}{=} \left| \bigcup_{j=0}^{N-1} \sigma_j \right| \le \sum_{j=0}^{N-1} |\sigma_j| = \sum_{j=0}^{N-1} 3 = 3N \stackrel{(5)}{\le} 3m.
$$

Therefore:

$$
\forall \{j,l\} \in \binom{[N]}{2}: \quad \sigma_k \cap \sigma_l = \emptyset \tag{13}
$$

Thus,

 $N-1$ $\bigcup^{\mathsf{V}-1}\sigma_j$ $i=0$

is a solution to the instance of the exact cover by 3-sets problem defined by (S', Σ) , by [\(12\)](#page-14-0) and [\(13\)](#page-15-0).

□

Summary:

- ▶ Supervised learning of BDTs is hard.
- \blacktriangleright More specifically, the NP-hard exact cover by 3-sets problem is reducible to the separability problem of BDTs, by construction of Haussler data.

Topics of upcoming exercises:

- ▶ A heuristic algorithm for the supervised learning of BDTs
- \triangleright Supervised learning of disjunctive normal forms