Machine Learning I

Jannik Irmai, David Stein, Bjoern Andres

Machine Learning for Computer Vision TU Dresden

https://mlcv.cs.tu-dresden.de/courses/24-winter/ml1/

Winter Term 2024/2025

Contents. This part of the course is about the supervised learning of binary decision trees.

- ▶ We introduce the problem as a specialization of supervised learning by defining labeled data, a family of functions, a regularizer and a loss function.
- ► We prove that the problem is NP-hard, by relating it to the exact cover by 3-sets problem.

We consider labeled data with **binary features**. More specifically, we consider some finite, non-empty set V, called the set of features, and labeled data T = (S, X, x, y) such that $X = \{0, 1\}^V$. Hence:

$$\begin{aligned} x \colon S \to \{0, 1\}^V \\ y \colon S \to \{0, 1\} \end{aligned}$$

Example.

7-	1	0	6	Ζ	0	6	2
3	8	0	0	8	8	4	7
5	8	7	3	9	0	2	8
١	5	0	2	8	4	2	3
6	4	3	9	З	2	1	8
5	0	1	6	6	5	5	2
1	7	7	F	5	3	7	3
G	3	7	6	Ô	1	4	0

Definition. A tuple $(V, Y, D, D', d^*, E, \delta, v, y)$ is called a V-variate Y-valued binary decision tree (BDT) if and only if the following conditions hold:

- 1. $V \neq \emptyset$ is finite (called the set of **variables**)
- 2. $Y \neq \emptyset$ is finite (called the set of **values**)
- 3. $(D \cup D', E)$ is a finite, non-empty directed binary tree with root d^*
- 4. every $d \in D'$ is a leaf
- 5. $\delta: E \to \{0, 1\}$
- 6. every $d \in D$ has precisely two out-edges, e = (d, d'), e' = (d, d''), such that $\delta(e) = 0$ and $\delta(e') = 1$
- 7. $v: D \to V$
- 8. $y \colon D' \to Y$

Definition. For any BDT $(V, Y, D, D', d^*, E, \delta, v, y)$, any $d \in D$ and any $j \in \{0, 1\}$, let $d_{\downarrow j} \in D \cup D'$ the unique node such that $e = (d, d_{\downarrow j}) \in E$ and $\delta(e) = j$.

Definition. For any BDT $\theta = (V, Y, D, D', d^*, E, \delta, v, y)$ and any $d \in D \cup D'$, the tuple $\theta[d] = (V, Y, D_2, D'_2, d, E', \delta', v', y')$ is called the **binary decision** subtree of θ rooted at d iff

- $(D_2 \cup D'_2, E')$ is the subtree of $(D \cup D', E)$ rooted at d
- δ' , v' and y' are the restrictions of δ , v and y to the subsets D_2 , D'_2 and E'

Lemma. For any BDT $\theta = (V, Y, D, D', d^*, E, \delta, v, y)$ and any $d \in D \cup D'$, the binary decision subtree $\theta[d]$ is itself a V-variate Y-valued BDT.

Definition. For any BDT $\theta = (V, Y, D, D', d^*, E, \delta, v, y)$, the function defined by θ is the $f_{\theta} : \{0, 1\}^V \to Y$ such that $\forall x \in \{0, 1\}^V$:

$$\begin{split} f_{\theta}(x) &= \begin{cases} y(d^{*}) & \text{if } D = \emptyset \\ f_{\theta[d^{*}_{\downarrow 0}]}(x) & \text{if } D \neq \emptyset \wedge x_{v(d^{*})} = 0 \\ f_{\theta[d^{*}_{\downarrow 1}]}(x) & \text{if } D \neq \emptyset \wedge x_{v(d^{*})} = 1 \end{cases} \\ &= \begin{cases} y(d^{*}) & \text{if } D = \emptyset \\ (1 - x_{v(d^{*})})f_{\theta[d^{*}_{\downarrow 0}]}(x) + x_{v(d^{*})}f_{\theta[d^{*}_{\downarrow 1}]}(x) & \text{otherwise} \end{cases} \end{split}$$

Remark. The set Θ of V-variate $Y = \{0, 1\}$ -valued BDTs can be identified with a subset of V-variate disjunctive normal forms.

Definition. For any BDT $\theta = (V, Y, D, D', d^*, E, \delta, v, y)$, the **depth** of θ is the $R(\theta) \in \mathbb{N}$ such that

$$R(\theta) = \begin{cases} 0 & \text{if } D = \emptyset\\ 1 + \max\{R(\theta[d^*_{\downarrow 0}]), R(\theta[d^*_{\downarrow 1}])\} & \text{otherwise} \end{cases}$$
(1)

Definition. For any labeled data T = (S, X, x, y) with $X = \{0, 1\}^V$, the set Θ of all V-variate $\{0, 1\}$ -valued BDTs, the family $f : \Theta \to \{0, 1\}^X$ of functions defined by these BDTs, the depth R of BDTs as a regularizer, the 0-1-loss L and any $\lambda \in \mathbb{R}^+_0$:

▶ The instance of the **supervised learning** problem of BDTs has the form

$$\min_{\theta \in \Theta} \quad \lambda R(\theta) + \sum_{s \in S} L(f_{\theta}(x_s), y_s)$$
(2)

The separation problem of BDTs has the form

$$\inf_{\theta \in \Theta} R(\theta) \tag{3}$$

subject to $\forall s \in S : f_{\theta}(x_s) = y_s$ (4)

► For any $m \in \mathbb{N}$, the **separability problem** of BDTs is to decide whether there exists a BDT $\theta \in \Theta$ such that

$$R(\theta) \le m \tag{5}$$

$$\forall s \in S: \quad f_{\theta}(x_s) = y_s \quad . \tag{6}$$

Remark. separability \leq_p separation \leq_p supervised learning¹.

 $^{^{1}\}leq_{p}$: Karp reduction.

Next, we show that *separability* is NP-hard by reducing the **exact cover by 3-sets** problem, using a construction by Haussler (1988).

Definition. Let S be any set and $\Sigma \subseteq 2^S$. Σ is called a **cover** of S if and only if

$$\bigcup_{\sigma \in \Sigma} \sigma = S \quad . \tag{7}$$

A cover of S is called **exact** if and only if

$$\forall \{\sigma, \sigma'\} \in {\Sigma \choose 2}: \quad \sigma \cap \sigma' = \emptyset .$$
(8)

Definition. Let S be any set and $\Sigma \subseteq 2^S$. Deciding whether there exists a $\Sigma' \subseteq \Sigma$ such that Σ' is an exact cover of S is called the instance of the **exact cover problem** w.r.t. S and Σ . If, in addition, |S| is an integer multiple of 3 and any $U \in \Sigma$ is such that |U| = 3, the instance of the exact cover problem wrt. S and Σ is also called the instance of the **exact cover by 3-sets problem** wrt. S and Σ .

Proof. For any instance (S', Σ) of the exact cover by 3-sets problem and the $n \in \mathbb{N}$ such that |S'| = 3n, we construct the instance of the separability problem of BDTs such that

$$\begin{array}{l} V = \Sigma \\ S = S' \cup \{0\} \\ \hline x : S \to \{0,1\}^{\Sigma} \text{ such that } x_0 = 0 \text{ and} \\ \forall s \in S' \ \forall \sigma \in \Sigma \colon \quad x_s(\sigma) = \begin{cases} 1 & \text{if } s \in \sigma \\ 0 & \text{otherwise} \end{cases} \\ \hline y : S \to \{0,1\} \text{ such that } y_0 = 0 \text{ and } \forall s \in S' \colon y_s = 1. \\ \hline m = n \end{cases}$$

We show that the instance the exact cover problem has a solution iff the instance of the separability problem of BDTs has a solution.

 (\Rightarrow) Let $\Sigma' \subseteq \Sigma$ a solution to the instance of the exact cover problem.

Consider any order on Σ' and the bijection $\sigma':n\to\Sigma'$ induced by this order.

We show that the BDT θ depicted below solves the instance of the separability problem of BDTs.

The BDT satisfies $R(\theta) = m$.

The BDT decides the labeled data correctly because

$$\blacktriangleright f_{\theta}(x_0) = 0 = y_0$$

At each of the m interior nodes, three additional elements of S' are mapped to 1. Thus, all 3m many elements s ∈ S' are mapped to 1. That is ∀s ∈ S': f_θ(x_s) = 1 = y_s.

 (\Leftarrow) Let $\theta=(V,Y,D,D',d^*,E,\delta,\sigma,y')$ a BDT that solves the instance of the separability problem of BDTs.

W.l.o.g., we assume, for any interior node $d\in D,$ that $d_{\downarrow 1}$ is a leaf and $y'(d_{\downarrow 1})=1.$

Hence, θ is of the form depicted below.

Therefore:

$$\forall x \in X: \quad f_{\theta}(x) = \begin{cases} 1 & \text{if } \exists j \in N: x(\sigma_j) = 1\\ 0 & \text{otherwise} \end{cases}$$
(10)

Thus,

$$\forall s \in S: \quad f_{\theta}(x_s) = \begin{cases} 1 & \text{if } \exists j \in N \colon s \in \sigma_j \\ 0 & \text{otherwise} \end{cases}$$
(11)

by definition of x in (9).

Consequently,

$$\bigcup_{j=0}^{N-1} \sigma_j = S' \quad , \tag{12}$$

by definition of y such that $\forall s \in S' \colon y_s = 1.$

Moreover, N = m, because

$$3m = |S'| \stackrel{(12)}{=} \left| \bigcup_{j=0}^{N-1} \sigma_j \right| \le \sum_{j=0}^{N-1} |\sigma_j| = \sum_{j=0}^{N-1} 3 = 3N \stackrel{(5)}{\le} 3m .$$

Therefore:

$$\forall \{j,l\} \in \binom{[N]}{2}: \quad \sigma_k \cap \sigma_l = \emptyset$$
(13)

Thus,

N-1 $\left[\right] \sigma_i$ i=0

is a solution to the instance of the exact cover by 3-sets problem defined by (S', Σ) , by (12) and (13).

Summary:

- Supervised learning of BDTs is hard.
- More specifically, the NP-hard exact cover by 3-sets problem is reducible to the separability problem of BDTs, by construction of Haussler data.

Topics of upcoming exercises:

- ► A heuristic algorithm for the supervised learning of BDTs
- Supervised learning of disjunctive normal forms