
1/18

Computer Vision I

Jannik Irmai, Jannik Presberger, Bjoern Andres

Machine Learning for Computer Vision
TU Dresden

https://mlcv.cs.tu-dresden.de/courses/24-winter/cv1/

Winter Term 2024/2025

https://mlcv.cs.tu-dresden.de/courses/24-winter/cv1/

2/18

Image decomposition

▶ So far, we have studied pixel classification, a problem whose feasible
solutions define decisions at the pixels of an image

▶ Next, we will study image decomposition, a problem whose feasible
solutions decide whether pairs of pixels are assigned to the same or
distinct components of the image

▶ Image decomposition has applications where components of the image are
indistinguishable by appearance (see next slide)

3/18

Image decomposition

7→

Volume Image (∼32 nm/voxel)1 Decomposition2

1Denk and Horstmann 2004. 10.1371/journal.pbio.0020329
2A, Köthe, Kröger, Helmstaedter, Briggman, Denk and Hamprecht 2012. 10.1016/j.media.2011.11.004

4/18

Image decomposition

4/18

Image decomposition

4/18

Image decomposition

4/18

Image decomposition

5/18

Image decomposition

Decomposition of a graph G = (V,E)

▶ A mathematical abstraction of a decomposition of an image is a
decomposition of the pixel grid graph.

▶ A decomposition of a graph is a partition of the node set into connected
subsets (one example is depicted above in gray).

5/18

Image decomposition

Decomposition of a graph G = (V,E)

▶ A decomposition of a graph is characterized by the set of edges that
straddle distinct components (depicted above as dotted lines)

▶ Those subsets of edges are called multicuts of the graph

5/18

Image decomposition

Multicut of a graph G = (V,E)

▶ A decomposition of a graph is characterized by the set of edges that
straddle distinct components (depicted above as dotted lines)

▶ Those subsets of edges are called multicuts of the graph

5/18

Image decomposition

Multicut of a graph G = (V,E)

▶ A subset of edges is a multicuts iff no cycle in the graph intersects with
the subset in precisely one edge

5/18

Image decomposition

Multicut of a graph G = (V,E)

▶ A subset of edges is a multicuts iff no cycle in the graph intersects with
the subset in precisely one edge

5/18

Image decomposition

Multicut of a graph G = (V,E)

▶ A subset of edges is a multicuts iff no cycle in the graph intersects with
the subset in precisely one edge

5/18

Image decomposition

Multicut of a graph G = (V,E)

multicuts(G) := {M ⊆ E | ∀C ∈ cycles(G) : |M ∩ C| ̸= 1}

5/18

Image decomposition

Multicut of a graph G = (V,E)

5/18

Image decomposition

Multicut of a graph G = (V,E)

▶ The characteristic function y : E → {0, 1} of a multicut y−1(1) can be
used to encode the decomposition induced by the multicut in an
|E|-dimensional 01-vector

▶ For any e ∈ E, ye = 1 indicates that an edge is cut, straddling distinct
components

5/18

Image decomposition

Multicut of a graph G = (V,E)

▶ The set of the characteristic functions of all multicuts of G:

YG :=

y ∈ {0, 1}E
∣∣∣∣∣∣ ∀(VC , EC) ∈ cycles(G)∀e ∈ EC : ye ≤

∑
f∈EC\{e}

yf

5/18

Image decomposition

Graph G = (V,E)

▶ An instance of the image decomposition problem is given by a graph
G = (V,E) and, for every edge e = {v, w} ∈ E, a (positive or negative)
cost ce ∈ R that is payed iff the incident pixels v and w are put in distinct
components

▶ Such costs can be learned (as described earlier in the course), e.g.,
ce = −fθ(xe), or more specifically, ce = −⟨θ, xe⟩.

5/18

Image decomposition

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2

-1

2

2

-1

2

2

-1

2

2

2

2

2

-1

2

Graph G = (V,E). Edge costs c : E → R

▶ An instance of the image decomposition problem is given by a graph
G = (V,E) and, for every edge e = {v, w} ∈ E, a (positive or negative)
cost ce ∈ R that is payed iff the incident pixels v and w are put in distinct
components

▶ Such costs can be learned (as described earlier in the course), e.g.,
ce = −fθ(xe), or more specifically, ce = −⟨θ, xe⟩.

5/18

Image decomposition

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2

-1

2

2

-1

2

2

-1

2

2

2

2

2

-1

2

Graph G = (V,E). Edge costs c : E → R

▶ Image decomposition problem:

min
y∈YG

∑
e∈E

ce ye

▶ The optimal solution is shown on the next slide

5/18

Image decomposition

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2

-1

2

2

-1

2

2

-1

2

2

2

2

2

-1

2

Graph G = (V,E). Edge costs c : E → R

6/18

Image decomposition

▶ One technique for finding feasible solutions to an image decomposition
problem is local search.

▶ Starting from the finest decomposition into singleton components
(depicted above), we greedily join neighboring components as long as this
improves the cost (see next slide).

6/18

Image decomposition

▶ Once no joining of neighboring components further reduces the cost, we
consider all pairs of neighboring components

(depicted in green) and all
nodes at the shared boundary (depicted in black) and all possibilities of
moving nodes from one component to the other.

▶ The procedure is iterated until no such transformation further reduces the
cost

6/18

Image decomposition

▶ Once no joining of neighboring components further reduces the cost, we
consider all pairs of neighboring components (depicted in green)

and all
nodes at the shared boundary (depicted in black) and all possibilities of
moving nodes from one component to the other.

▶ The procedure is iterated until no such transformation further reduces the
cost

6/18

Image decomposition

▶ Once no joining of neighboring components further reduces the cost, we
consider all pairs of neighboring components (depicted in green) and all
nodes at the shared boundary (depicted in black)

and all possibilities of
moving nodes from one component to the other.

▶ The procedure is iterated until no such transformation further reduces the
cost

6/18

Image decomposition

▶ Once no joining of neighboring components further reduces the cost, we
consider all pairs of neighboring components (depicted in green) and all
nodes at the shared boundary (depicted in black) and all possibilities of
moving nodes from one component to the other.

▶ The procedure is iterated until no such transformation further reduces the
cost

6/18

Image decomposition

▶ Once no joining of neighboring components further reduces the cost, we
consider all pairs of neighboring components (depicted in green) and all
nodes at the shared boundary (depicted in black) and all possibilities of
moving nodes from one component to the other.

▶ The procedure is iterated until no such transformation further reduces the
cost

6/18

Image decomposition

▶ Once no joining of neighboring components further reduces the cost, we
consider all pairs of neighboring components (depicted in green) and all
nodes at the shared boundary (depicted in black) and all possibilities of
moving nodes from one component to the other.

▶ The procedure is iterated until no such transformation further reduces the
cost

6/18

Image decomposition

▶ Once no joining of neighboring components further reduces the cost, we
consider all pairs of neighboring components (depicted in green) and all
nodes at the shared boundary (depicted in black) and all possibilities of
moving nodes from one component to the other.

▶ The procedure is iterated until no such transformation further reduces the
cost

6/18

Image decomposition

▶ Once no joining of neighboring components further reduces the cost, we
consider all pairs of neighboring components (depicted in green) and all
nodes at the shared boundary (depicted in black) and all possibilities of
moving nodes from one component to the other.

▶ The procedure is iterated until no such transformation further reduces the
cost

7/18

Image decomposition

Definition. Let G = (V,E) be any graph.

▶ A subgraph G′ = (V ′, E′) of G is called a component (cluster) of G iff

G′ is non-empty, node-induced (i.e. E′ = E ∩
(
V ′

2

)
) and connected.

▶ A partition Π of the node set V is called a decomposition (clustering) of
G iff, for every U ∈ Π, the subgraph (U,E ∩

(
U
2

)
) of G induced by U is

connected (and thus a component of G).

▶ Let DG denote the set of all decompositions of G.

Definition. Let G = (V,E) be any graph. A subset M ⊆ E of edges is called a
multicut of G iff, for every cycle C ⊆ E of G: |C ∩M | ̸= 1. Let MG denote
the set of all multicuts of G.

Lemma. For any decomposition of a graph G, the set of those edges that
straddle distinct components is a multicut of G. This multicut is said to be
induced by the decomposition. The map from decompositions to induced
multicuts is a bijection from DG to MG.

8/18

Image decomposition

Lemma. For any graph G = (V,E) and any y ∈ {0, 1}E , the set y−1(1) is a
multicut of G iff the following inequalities are satisfied:

∀(VC , EC) ∈ cycles(G) ∀e ∈ EC : ye ≤
∑

f∈EC\{e}

yf (1)

Definition. For any graph G = (V,E), any c ∈ RE and the set YG of all
y ∈ {0, 1}E that satisfy (1), the minimum cost multicut problem has the form

min
y∈{0,1}E

∑
e∈E

ce ye︸ ︷︷ ︸
=:φ(y)

subject to ∀(VC , EC) ∈ cycles(G) ∀e ∈ EC : ye ≤
∑

f∈EC\{e}

yf

9/18

Image decomposition

Definition. For any graph G = (V,E) and any decomposition Π of G, let yΠ

the characteristic function of the multicut induced by Π, i.e. yΠ ∈ {0, 1}E such
that

∀e ∈ E : yΠ
e = 0 ⇔ ∃U ∈ Π: e ⊆ U (2)

Remark: The characteristic function y ∈ {0, 1}E of a multicut y−1(1) makes
explicit for every edge {u, v} = e ∈ E whether the incident nodes u and v
belong to the same component (ye = 0) or distinct components (ye = 1).

10/18

Image decomposition

Greedy joining algorithm:

▶ The greedy joining algorithm is a local search algorithm that starts from
any initial decomposition.

▶ It searches for decompositions with lower cost by joining pairs of
neighboring (!) components recursively.

▶ As components can only grow and the number of components decreases
by one in every step, one typically starts from the finest decomposition Π0

into one-elementary components.

11/18

Image decomposition

Definition. Let G = (V,E) be any graph.

▶ For any disjoint sets B,C ⊆ V , the pair {B,C} is called neighboring in
G iff there exist nodes b ∈ B and c ∈ C such that {b, c} ∈ E.

▶ For any decomposition Π of G, we define

EΠ =
{
{B,C} ∈

(
Π
2

) ∣∣∃b ∈ B ∃c ∈ C : {b, c} ∈ E
}

. (3)

▶ For any decomposition Π of G and any {B,C} ∈ EΠ, let joinBC [Π] be the
decomposition of G obtained by joining the sets B and C in Π, i.e.

joinBC [Π] = (Π \ {B,C}) ∪ {B ∪ C} . (4)

12/18

Image decomposition

Π′ = greedy-joining(Π)

choose {B,C} ∈ argmin
{B′,C′}∈EΠ

φ(yjoinB′C′ [Π])− φ(yΠ)

if φ(yjoinBC [Π])− φ(yΠ) < 0
Π′ := greedy-joining(joinBC [Π])

else
Π′ := Π

13/18

Image decomposition

Greedy moving algorithm:

▶ The greedy moving algorithm is a local search algorithm that starts from
any initial decomposition, e.g., the fixed point of greedy joining.

▶ It searches for decompositions with lower cost by recursively moving
individual nodes from one component to a neighboring (!) component,
possibly a new one.

▶ When a cut node is moved out of a component or a node is moved to a
new component, the number of components increases. When the last
node is moved out of a component, the number of components decreases.

14/18

Image decomposition

Definition. For any graph G = (V,E) and any decomposition Π of G, the
decomposition Π is called coarsest iff, for every U ∈ Π, the component
(U,E ∩

(
U
2

)
) induced by U is maximal.

Lemma. For any graph G, the coarsest decomposition is unique. We denote it
by Π∗

G.

Definition. For any graph G = (V,E), any decomposition Π of G and any
a ∈ V , let Ua the unique Ua ∈ Π such that a ∈ Ua, and let

Na = {∅} ∪ {W ∈ Π | a /∈ W ∧ ∃w ∈ W : {a,w} ∈ E} (5)

Ga =
(
Ua \ {a}, E ∩

(
Ua\{a}

2

))
(6)

For any U ∈ Na, let moveaU [Π] the decomposition of G obtained by moving
the node a to the set U , i.e.

moveaU [Π] = Π \ {Ua, U} ∪ {U ∪ {a}} ∪Π∗
Ga

. (7)

15/18

Image decomposition

Π′ = greedy-moving(Π)

choose (a, U) ∈ argmin
a′∈A, U′∈Na′

φ(ymovea′U′ [Π])− φ(yΠ)

if φ(ymoveaU [Π])− φ(yΠ) < 0
Π′ := greedy-moving(moveaU [Π])

else
Π′ := Π

16/18

Image decomposition

Greedy moving using the technique of Kernighan and Lin:

▶ Both algorithms discussed above terminate as soon as no transformation
(join and move, resp.) leads to a decomposition with strictly lower cost.

▶ This can be sub-optimal in case transformations that increase the cost at
one point in the recursion can lead to transformations that decrease the
cost at later points in the recursion and the decrease overcompensates the
increase.

▶ A generalization of local search introduced by Kernighan and Lin (1970)
can escape such sub-optimal fixed points.

▶ Its application to greedy moving (next slide) builds a sequence of moves
and then carries out the first t moves whose cumulative decrease in cost is
optimal.

17/18

Image decomposition

Π′ = greedy-moving-kl(Π)

Π0 := Π
δ0 := 0
A0 := A
t := 0
repeat (build sequence of moves)

choose (at, Ut) ∈ argmin
a∈At,U∈Na

φ(ymoveaU [Πt]) − φ(yΠt)

Πt+1 := moveatUt
[Πt]

δt+1 := φ(y
Πt+1) − φ(yΠt)

At+1 := At \ {at} (move at only once)
t := t + 1

until At = ∅

t̂ := min argmin
t′∈{0,...,|A|}

t′∑
τ=0

δτ (choose sub-sequence)

if
t̂∑

τ=0
δτ < 0

Π′ := greedy-moving-kl(Πt̂) (recurse)
else

Π′ := Π (terminate)

18/18

Image decomposition

Summary:

▶ Image decomposition assumes the form of the minimum cost multicut
problem with cost coefficients learned from data.

▶ Local search algorithms for this problem include greedy joining, greedy
moving and greedy moving using the technique of Kernighan and Lin.

