Computer Vision I

Jannik Irmai, Jannik Presberger, Bjoern Andres

Machine Learning for Computer Vision TU Dresden

https://mlcv.cs.tu-dresden.de/courses/24-winter/cv1/

Winter Term 2024/2025

Excursus: Maximum st-Flow and Minimum st-Cut

- \blacktriangleright Maximum st-Flow Problem
- ▶ Residual networks and augmenting paths
- \blacktriangleright Minimum st-Cut Problem
- \blacktriangleright Maximum st-Flow/Minimum st-Cut Theorem
- ▶ Ford-Fulkerson-Algorithm

For any directed graph (V, E) , any $U \subseteq V$ and any $W \subseteq V$ let $UW := \{uv \in E \mid u \in U \wedge w \in W\}$.

 $\mathsf{Definition} \ 1.$ For any directed graph (V,E) and any $f \in \mathbb{N}_0^E$, the maps $\varphi^+, \varphi^-, \varphi: 2^V \to \mathbb{Z}$ such that

$$
\forall U \in 2^V \quad \varphi_U^+ = \sum_{uv \in UU^c} f_{uv} \tag{1}
$$

$$
\varphi_U^- = \sum_{vu \in U^c U} f_{vu} \tag{2}
$$

$$
\varphi_U = \varphi_U^+ - \varphi_U^- \tag{3}
$$

are called the outflux, influx and flux in (V, E) wrt. f.

For any $u \in V$,

$$
\varphi_u^+ := \varphi_{\{u\}}^+ \\
\varphi_u^- := \varphi_{\{u\}}^- \\
\varphi_u := \varphi_{\{u\}}
$$

are called the outflux, influx and flux of u in (V, E) wrt. f .

Lemma 1. For any directed graph (V,E) , any $f\in \mathbb{N}_0^E$ and any $U\subseteq V$

$$
\varphi_U = \sum_{u \in U} \varphi_u \quad . \tag{4}
$$

Proof.

$$
\varphi_U = \sum_{uv \in UU^c} f_{uv} - \sum_{vu \in U^cU} f_{vu}
$$

=
$$
\left(\sum_{uv \in UV} f_{uv} - \sum_{uu' \in UU} f_{uu'} \right) - \left(\sum_{vu \in VU} f_{vu} - \sum_{u'u \in UU} f_{uu'} \right)
$$

=
$$
\sum_{uv \in UV} f_{uv} - \sum_{vu \in VU} f_{vu}
$$

=
$$
\sum_{u \in U} \left(\sum_{vw \in \{u\} \{u\}^c} f_{vw} - \sum_{vw \in \{u\}^c \{u\}} f_{vw} \right)
$$

=
$$
\sum_{u \in U} \varphi_u.
$$

□

Definition 2. A 5-tuple $N = (V, E, s, t, c)$ is called a network iff (V, E) is a directed graph and $s \in V$ and $t \in V$ and $s \neq t$ and $c \in \mathbb{N}^E.$

The nodes s and t are called the source and the sink of N , respectively.

For any edge $e \in E$, c_e is called the **capacity** of e in N.

Definition 3. A map $f \in \mathbb{N}_0^E$ is called an st -preflow in a network $N = (V, E, s, t, c)$ iff

$$
\forall e \in E \quad 0 \le f_e \le c_e \tag{5}
$$

$$
\forall v \in V - \{s\} \quad \varphi_v \leq 0 \quad . \tag{6}
$$

An st-preflow f in N is called an st-flow in N iff, in addition,

$$
\forall v \in V - \{s, t\} \quad \varphi_v = 0 \tag{7}
$$

Definition 4. The instance of the Maximum st-Flow Problem wrt. a network $N = (V, E, s, t, c)$ is to

$$
\max_{f \in \mathbb{N}_0^E} \sum_{sv \in E} f_{sv} - \sum_{vs \in E} f_{vs} \tag{8}
$$

subject to $\forall e \in E \quad 0 \le f_e \le c_e$ (9)

$$
\forall v \in V - \{s, t\} \quad \sum_{vw \in E} f_{vw} = \sum_{uv \in E} f_{uv} \quad . \tag{10}
$$

Note:

$$
\sum_{sv \in E} f_{sv} - \sum_{vs \in E} f_{vs} = \varphi_s
$$

Definition 5. For any network $N = (V, E, s, t, c)$ and any st-preflow f in N, the ${\sf residual}$ network of N wrt. f is the network $N'=(V,E',s,t,c')$ such that

$$
E' = E^+ \cup E^-
$$

\n
$$
E^+ = \{vw \in E \mid c_{vw} - f_{vw} > 0\}
$$

\n
$$
E^- = \{vw \in V^2 \mid wv \in E \land f_{wv} > 0\}
$$

and

$$
\forall vw \in E' \quad c'_{vw} = \begin{cases} c_{vw} - f_{vw} & \text{if } vw \in E^+ \\ f_{wv} & \text{if } vw \in E^- \end{cases} . \tag{11}
$$

For any $e \in E'$, c'_e is called the **residual capacity** of e wrt. f .

Any path in (V, E') from s to t (if such a path exists) is called an augmenting **path** of f .

Lemma 2. Let $N = (V, E, s, t, c)$ be a network and f an st-preflow in N. Assume that an $n \in \mathbb{N}$ and an augmenting path $p = (v_1w_1, \ldots, v_nw_n)$ of f exist.

Let

$$
\delta := \min_{vw \in p([n])} c'_{vw} \quad . \tag{12}
$$

Then, $f' \in \mathbb{N}_0^E$ such that

$$
\forall vw \in E': \quad f'_{vw} = \begin{cases} f_{vw} + \delta & \text{if } vw \in p([n]) \land vw \in E \\ f_{vw} - \delta & \text{if } vw \in p([n]) \land wv \in E \\ f_{vw} & \text{otherwise} \end{cases} \tag{13}
$$

is an st -preflow in N wrt. which

$$
\varphi'_s = \varphi_s + \delta \tag{14}
$$

Moreover, if f is an st -flow in N , so is f' .

Definition 6. Let (V, E) be a directed graph. Let $s \in V$ and $t \in V$ and $s \neq t$.

- ▶ $X \subseteq V$ is called an st-cutset of (V, E) iff $s \in X$ and $t \notin X$.
- ▶ $Y \subseteq E$ is called an st-cut of (V, E) iff there exists an st-cutset X such that $Y = \{vw \in E | v \in X \wedge w \notin X\}.$

Definition 7. The instance of the Minimum st-Cut Problem wrt. a network $N = (V, E, s, t, c)$ is to

$$
\min_{x \in \{0,1\}^V} \quad \sum_{vw \in E} x_v (1 - x_w) c_{vw} \tag{15}
$$

$$
subject to \t x_s = 1 \t (16)
$$

$$
x_t = 0 \tag{17}
$$

Note: With $X := \{v \in V | x_v = 1\}$, we have

$$
\sum_{vw\in E} x_v(1-x_w)c_{vw} = \sum_{vw\in XX^c} c_{vw}
$$

Lemma 3. For every network $N = (V, E, s, t, c)$, every st-flow f in N, and every st-cutset $X \subseteq V$,

$$
\varphi_s \leq \sum_{vw \in XX^c} c_{vw} \quad . \tag{18}
$$

Proof.

Lemma [3](#page-13-0) does not hold analogously for every st -preflow, because, wrt. an st-preflow, φ_S need not be an upper bound on φ_s .

□

Theorem 1. For any network $N = (V, E, s, t, c)$, any $s, t \in V$ such that $s \neq t$, and any st -flow f in N , the following three conditions are equivalent

- 1. There exists an st-cut whose capacity is equal to φ_s .
- 2. The st-flow f is optimal, i.e., a solution of $(8)-(10)$ $(8)-(10)$ $(8)-(10)$.
- 3. No augmenting path of f exists.

Proof.

- (1) implies (2) by virtue of Lemma [3.](#page-13-0)
- (2) implies (3) by virtue of Lemma [2.](#page-10-0)

We prove that (3) implies (1):

- \blacktriangleright Let f be an st-flow such that no augmenting path exists.
- ▶ Let S be the set of all nodes $v \in V$ such that there exists a path in the residual network wrt. f from s to v . Let S also include s itself.
- ▶ Then, $t \notin S$ (otherwise, the path from s to t in the residual network would be an augmenting path).
- \blacktriangleright Moreover, ...

▶ Moreover,

- $\varphi_s = \sum$ v∈S by [\(7\)](#page-7-0) and $t \notin S$ $=\varphi_S$ by Lemma [1](#page-5-0) $= \sum f_{vw} - \sum$ $vw ∈ S S^c$ $v w ∈ S^c S$ by definition of φ_S $=$ Σ $vw \in SSc$ by the arguments below.
- ▶ For any $vw \in SS^c$, we have $f_{vw} = c_{vw}$ (otherwise, the contradiction $w \in S$ follows by construction of S and by definition of the residual network).
- ▶ For any $vw \in S^cS$, we have $f_{vw} = 0$ (otherwise, the contradiction $v \in S$ follows by construction of S and by definition of the residual network).

□

Algorithm 1. (Ford and Fulkerson, 1956)

Input: Network $N = (V, E, s, t, c)$ **Output:** $f : E \to \mathbb{N}_0$ for all $vw \in E$ $f_{vw} := 0$ while $∃n ∈ ℕ ∃augmenting path p = (v₁w₁, …, v_nw_n)$ of f $\delta := \min_{vw \in p([n])} c'_{vw}$ for all $vw \in E$ $f_{vw} :=$ $\sqrt{ }$ \int \mathbf{I} $f_{vw} + \delta$ if $vw \in P \wedge vw \in E$ $f_{vw} - \delta$ if $vw \in P \wedge wv \in E$ f_{vw} otherwise

Theorem 2. Algorithm [1](#page-17-0) terminates. The output f is a maximum st-flow in N .

Proof. Termination.

 \blacktriangleright For every augmenting path processed, φ_s increases by at least 1.

▶ Moreover,

$$
\varphi_s \leq \sum_{vw \in \{s\}\{s\}^c} c_{vw} \qquad \text{(by Lemma 3)}
$$

- ▶ Therefore, only finitely many augmenting paths are processed.
- \blacktriangleright Thus, the algorithm terminates.

Optimality:

- \blacktriangleright Throughout the execution, f is an st-flow in N.
- \blacktriangleright When the algorithm terminates, no augmenting path exists.
- \blacktriangleright Thus, f is a maximum st-flow in N (by Theorem [1\)](#page-14-0).