Machine Learning II

Bjoern Andres, Jannik Irmai, Jannik Presberger, David Stein

Machine Learning for Computer Vision
TU Dresden

Summer Term 2024

Partial Optimality in Graphical Model Inference

Outline

- Literature
- Notation
- Pseudo-Boolean functions
- Multi-linear polynomial forms
- Existence and uniqueness
- Reduction of PBO to QPBO
- Posiforms
- Existence
- Bounds
- Weak persistency
- Complementation and the Floor Dual Bound

This lecture is based on the publications

- E. Boros, P. L. Hammer, X. Sun: Network flows and minimization of quadratic pseudo-Boolean functions. RUTCOR Research Report 17-1991
- E. Boros, P. L. Hammer: Pseudo-Boolean optimization. Discrete Applied Mathematics 123(1-3): 155-225 (2002)
- E. Boros, P. L. Hammer, R. Sun, G. Tavares: A max-flow approach to improved lower bounds for quadratic unconstrained binary optimization (QUBO). Discrete Optimization 5(2): 501-529 (2008)

Definition 1

For any $n \in \mathbb{N}$, any $d \in\{0, \ldots, n\}$, let

$$
\begin{equation*}
J_{n d}:=\bigcup_{m=0}^{d}\binom{\{1, \ldots, n\}}{d} \quad C_{n d}:=\mathbb{R}^{J_{n d}} \tag{1}
\end{equation*}
$$

and call any $c \in C_{n d}$ an n-variate multi-linear polynomial form of degree at most d.
Example. For $n=d=2$, we have

$$
\begin{aligned}
J_{22} & =\bigcup_{m=0}^{2}\binom{\{1,2\}}{m} \\
& =\binom{\{1,2\}}{0} \cup\binom{\{1,2\}}{1} \cup\binom{\{1,2\}}{2} \\
& =\{\emptyset\} \cup\{\{1\},\{2\}\} \cup\{\{1,2\}\} \\
& =\{\emptyset,\{1\},\{2\},\{1,2\}\}
\end{aligned}
$$

Definition 2

For any $n \in \mathbb{N}$, any $d \in\{0, \ldots, n\}$ and any $c \in C_{n d}, f_{c}:\{0,1\}^{n} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\forall x \in\{0,1\}^{n}: \quad f_{c}(x):=\sum_{m=0}^{d} \sum_{J \in(\{1, \ldots, n\}} c_{J} \prod_{j \in J} x_{j} \tag{2}
\end{equation*}
$$

is called the PBF defined by c.
Example. For any $c \in C_{22}, f_{c}:\{0,1\}^{2} \rightarrow \mathbb{R}$ is such that

$$
\forall x \in\{0,1\}^{2}: \quad f_{c}\left(x_{1}, x_{2}\right)=c_{\emptyset}+c_{\{1\}} x_{1}+c_{\{2\}} x_{2}+c_{\{1,2\}} x_{1} x_{2} .
$$

Lemma 1

Every PBF has a unique multi-linear polynomial form. More precisely,

$$
\begin{equation*}
\forall n \in \mathbb{N} \quad \forall f:\{0,1\}^{n} \rightarrow \mathbb{R} \quad \exists \exists_{1} c \in C_{n n} \quad f=f_{c} \tag{3}
\end{equation*}
$$

Example. For $n=d=2$ and any $f:\{0,1\}^{2} \rightarrow \mathbb{R}$, the existence of a $c \in C_{22}$ such that $f=f_{c}$ means

$$
\forall x \in\{0,1\}^{2} \quad f\left(x_{1}, x_{2}\right)=c_{\emptyset}+c_{\{1\}} x_{1}+c_{\{2\}} x_{2}+c_{\{1,2\}} x_{1} x_{2} .
$$

Explicitly,

$$
\begin{aligned}
& f(0,0)=c_{\emptyset} \\
& f(1,0)=c_{\emptyset}+c_{\{1\}} \\
& f(0,1)=c_{\emptyset}+c_{\{2\}} \\
& f(1,1)=c_{\emptyset}+c_{\{1\}}+c_{\{2\}}+c_{\{1,2\}} .
\end{aligned}
$$

In this example, a suitable c exists and is defined uniquely by f.

Proof.

- For any $J \subseteq\{1, \ldots, n\}$, let $x^{J} \in\{0,1\}^{n}$ such that

$$
\forall j \in\{1, \ldots, n\}: \quad x_{j}^{J}=\left\{\begin{array}{ll}
1 & \text { if } j \in J \\
0 & \text { otherwise }
\end{array} .\right.
$$

- Now,

$$
\forall x \in\{0,1\}^{n}: \quad f(x)=\sum_{J \subseteq\{1, \ldots, n\}} c_{J} \prod_{j \in J} x_{j}
$$

is written equivalently as

$$
\begin{aligned}
f\left(x^{\emptyset}\right) & =c_{\emptyset} \\
\forall J \neq \emptyset: & f\left(x^{J}\right)
\end{aligned}=c_{J}+\sum_{J^{\prime} \subset J} c_{J^{\prime}} .
$$

- Thus, c is defined uniquely (by induction over the cardinality of J).

Definition 3
For any $n \in \mathbb{N}$ and any $d \in\{0, \ldots, n\}$, let

$$
\begin{equation*}
F_{n d}:=\left\{f:\{0,1\}^{n} \rightarrow \mathbb{R} \mid \exists c \in C_{n d}: f=f_{c}\right\} \tag{4}
\end{equation*}
$$

and call any $f \in F_{n d}$ an n-variate PBF of degree at most d.
In addition, call any $f \in F_{n 2}$ a quadratic PBF (QPBF).
Note. For any $n \in \mathbb{N}, F_{n n}$ is the set of all n-variate PBFs (by Lemma 1).

- Pseudo-Boolean Optimization (PBO): Given $n \in \mathbb{N}$ and $f:\{0,1\}^{n} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\min _{x \in\{0,1\}^{n}} f(x) . \tag{5}
\end{equation*}
$$

- Quadratic Pseudo-Boolean Optimization (QPBO): Given $n \in \mathbb{N}$ and $f \in F_{n 2}$,

$$
\begin{equation*}
\min _{x \in\{0,1\}^{n}} f(x) . \tag{6}
\end{equation*}
$$

- Is QPBO less complex than PBO?

Definition 4
For any $n \in \mathbb{N}$ and any $c \in C_{n n}$, define the size of c as

$$
\begin{equation*}
\operatorname{size}(c):=\sum_{J \subseteq\{1, \ldots, n\}: c_{J} \neq 0}|J| . \tag{7}
\end{equation*}
$$

Lemma 2
For any $x, y, z \in\{0,1\}$:

$$
\begin{align*}
& z=x y \quad \Leftrightarrow \quad x y-2 x z-2 y z+3 z=0 \tag{8}\\
& z \neq x y \quad \Leftrightarrow \quad x y-2 x z-2 y z+3 z>0 \tag{9}
\end{align*}
$$

Proof. By verifying equivalence for all eight cases.

Algorithm 1 (Boros and Hammer 2001)

```
Input: \(c \in C_{n n}\)
Output: \(c^{\prime} \in C_{n 2}\)
\(M:=1+2 \sum_{J \subseteq\{1, \ldots, n\}}\left|c_{J}\right|\)
\(m:=n\)
\(c^{m}:=c\)
while there exists a \(J \subseteq\{1, \ldots, n\}\) such that \(|J|>2\) and \(c_{J}^{m} \neq 0\)
    Choose \(j, k \in J\) such that \(j \neq k\)
    \(c^{m+1}:=c^{m}\)
    \(c_{\{j, k\}}^{m+1}:=c_{\{j, k\}}^{m+1}+M\)
    \(c_{\{j, m+1\}}^{m+1}:=-2 M\)
    \(c_{\{k, m+1\}}^{m+1}:=-2 M\)
    \(c_{\{m+1\}}^{m+1}:=3 M\)
    for all \(\{j, k\} \subseteq J^{\prime} \subseteq\{1, \ldots, n\}\) such that \(c_{J^{\prime}}^{m+1} \neq 0\)
        \(c_{J^{\prime}-\{j, k\} \cup\{m+1\}}^{m+1}:=c_{J^{\prime}}^{m+1}\)
        \(c_{J^{\prime}}^{m+1}:=0\)
    \(m:=m+1\)
\(c^{\prime}:=c^{m}\)
```


Theorem 1

- Algorithm 1 terminates in polynomial time in size(c).
- size(c^{\prime}) is polynomially bounded by size(c).
- The multi-linear quadratic form c^{\prime} is such that $\forall \hat{x} \in \mathbb{R}^{n}$:

$$
\begin{align*}
& \hat{x} \in \underset{x \in\{0,1\}^{n}}{\operatorname{argmin}} f_{c}(x) \\
\Rightarrow & \exists \hat{x}^{\prime} \in\{0,1\}^{m}\left(\hat{x}_{\{1, \ldots, n\}}^{\prime}=\hat{x}_{\{1, \ldots, n\}} \wedge \hat{x}^{\prime} \in \underset{x^{\prime} \in\{0,1\}^{m}}{\operatorname{argmin}} f_{c^{\prime}}\left(x^{\prime}\right)\right) . \tag{10}
\end{align*}
$$

Proof.

- The algorithm replaces the occurrence of $x_{j} x_{k}$ by x_{m+1} and adds the form $M\left(x_{j} x_{k}-2 x_{j} x_{m+1}-2 x_{k} x_{m+1}+3 x_{m+1}\right)$.
- If $x_{m+1}=x_{j} x_{k}$,

$$
f^{m+1}\left(x_{1}, \ldots, x_{m+1}\right)=f^{m}\left(x_{1}, \ldots, x_{n}\right) \leq \max _{x^{\prime} \in\{0,1\}^{n}} f^{m}\left(x^{\prime}\right)<M / 2 .
$$

- If $x_{m+1} \neq x_{j} x_{k}$,

$$
f^{m+1}\left(x_{1}, \ldots, x_{m+1}\right) \geq M / 2
$$

(by Lemma 2 and by definition of M).

- For every iteration m,

$$
\left|\left\{J \subseteq \{ 1 , \ldots , n \} | | J | > 2 \wedge c _ { J } ^ { m + 1 } \neq 0 \} \left|<\left|\left\{J \subseteq\{1, \ldots, n\}| | J \mid>2 \wedge c_{J}^{m} \neq 0\right\}\right|\right.\right.\right.
$$

which proves the complexity claims.

Summary

- Every PBF has a unique multi-linear polynomial form.
- PBO is polynomially reducible to QPBO.

Definition 5

For any $n \in \mathbb{N}$ and any $d \in\{0, \ldots, n\}$, let

$$
\begin{aligned}
K_{n d}^{+} & :=\left\{\left(K^{1}, K^{0}\right)\left|K^{1}, K^{0} \subseteq\{1, \ldots, n\} \wedge K^{1} \cap K^{0}=\emptyset \wedge\right| K^{1}\left|+\left|K^{0}\right|=d\right\}\right. \\
J_{n d}^{+} & :=\bigcup_{m=0}^{d} K_{n m}^{+} \\
C_{n d}^{+} & :=\left\{c: J_{n d}^{+} \rightarrow \mathbb{R} \mid \forall j \in J_{n d}^{+} \backslash\{(\emptyset, \emptyset)\}: 0 \leq c_{j}\right\}
\end{aligned}
$$

and call any $c \in C_{n d}^{+}$an n-variate posiform of degree at most d.
Example. For $n=d=2$,

$$
\begin{aligned}
J_{22}^{+}= & \{(\emptyset, \emptyset)\} \\
& \cup\{(\{1\}, \emptyset),(\emptyset,\{1\}),(\{2\}, \emptyset),(\emptyset,\{2\})\} \\
& \cup\{(\{1,2\}, \emptyset),(\{1\},\{2\}),(\{2\},\{1\}),(\emptyset,\{1,2\})\}
\end{aligned}
$$

Definition 6
For any $n \in \mathbb{N}$, any $d \in\{0, \ldots, n\}$ and any $c \in C_{n d}^{+}, f_{c}:\{0,1\}^{n} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\forall x \in\{0,1\}^{n} \quad f_{c}(x):=\sum_{\left(J^{1}, J^{0}\right) \in J_{n d}^{+}} c_{J^{1} J^{0}} \prod_{j \in J^{1}} x_{j} \prod_{j^{\prime} \in J^{0}}\left(1-x_{j}^{\prime}\right) \tag{11}
\end{equation*}
$$

is called the PBF defined by c.
Example. For any $c \in C_{22}^{+}, f_{c}:\{0,1\}^{2} \rightarrow \mathbb{R}$ is such that $\forall x \in\{0,1\}^{2}$:

$$
\begin{aligned}
f(x)= & c_{\emptyset \emptyset} \\
& +c_{\{1\} \emptyset} x_{1}+c_{\emptyset\{1\}}\left(1-x_{1}\right)+c_{\{2\} \emptyset} x_{2}+c_{\emptyset\{2\}}\left(1-x_{2}\right) \\
& +c_{\{1,2\} \emptyset} x_{1} x_{2}+c_{\{1\}\{2\}} x_{1}\left(1-x_{2}\right)+c_{\{2\}\{1\}}\left(1-x_{1}\right) x_{2} \\
& +c_{\emptyset\{1,2\}}\left(1-x_{1}\right)\left(1-x_{2}\right) .
\end{aligned}
$$

Definition 7

For any $n \in \mathbb{N}$ and any $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, the posiform defined by

$$
\begin{array}{ll}
\forall x \in\{0,1\}^{n}: & K_{x}^{1}:=\left\{j \in\{1, \ldots, n\} \mid x_{j}=1\right\} \\
& K_{x}^{0}:=\left\{j \in\{1, \ldots, n\} \mid x_{j}=0\right\}
\end{array}
$$

and

$$
J:=\{(\emptyset, \emptyset)\} \cup \bigcup_{x \in\{0,1\}^{n}}\left\{\left(K_{x}^{1}, K_{x}^{0}\right)\right\}
$$

and $c: J \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
c_{\emptyset \emptyset} & :=\min _{x \in\{0,1\}^{n}} f(x) \\
\forall x \in\{0,1\}^{n} \quad c_{K_{x}^{1}} K_{x}^{0} & :=f(x)-c_{\emptyset \emptyset}
\end{aligned}
$$

is called min-term posiform of f.

Lemma 3
For any $n \in \mathbb{N}$ and any $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, the min-term posiform c of f holds $f_{c}=f$.
Corollary 1
For any $n \in \mathbb{N}$ and any $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, there exists a posiform $c \in C_{n n}^{+}$such that $f_{c}=f$.

Proof of Lemma 3.

- Let $n \in \mathbb{N}$ and $f:\{0,1\}^{n} \rightarrow \mathbb{R}$. Moreover, let $c: J \rightarrow \mathbb{R}$ the min-term posiform of f.
- c is a posiform (by definition).
- Let $g:\{0,1\}^{n} \rightarrow \mathbb{R}$ be the PBF defined by this posiform.
- Then, for any $x \in\{0,1\}^{n}$,

$$
\left(J^{1}, J^{0}\right) \in\left\{(\emptyset, \emptyset),\left(K_{x}^{1}, K_{x}^{0}\right)\right\} \subseteq J
$$

are the only elements of J for which

$$
0 \neq \prod_{j \in J^{1}} x_{j} \prod_{j^{\prime} \in J^{0}}\left(1-x_{j}^{\prime}\right)=1
$$

- Thus,

$$
\begin{aligned}
\forall x \in\{0,1\}^{n} \quad g(x) & =c_{\emptyset \emptyset}+c_{K_{x}^{1} K_{x}^{0}} \\
& =c_{\emptyset \emptyset}+f(x)-c_{\emptyset \emptyset} \quad \text { (by definition of } c \text {) } \\
& =f(x) .
\end{aligned}
$$

Note. Unlike multi-linear polynomial forms, posiforms of PBFs need not be unique, e.g., $x_{1}=x_{1} x_{2}+x_{1}\left(1-x_{2}\right)$.

Definition 8
For any $n \in \mathbb{N}$, any $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ and any $d \in\{0, \ldots, n\}$, let

$$
\begin{equation*}
C_{n d}^{+}(f):=\left\{c \in C_{n d}^{+} \mid f_{c}=f\right\} \tag{12}
\end{equation*}
$$

Note. For any $n \in \mathbb{N}$ and any $f:\{0,1\}^{n} \rightarrow \mathbb{R}, C_{n n}^{+}(f)$ contains at least the min-term posiform of f.

Lemma 4

$$
\forall n \in \mathbb{N} \quad \forall f:\{0,1\}^{n} \rightarrow \mathbb{R} \quad \forall c \in C_{n n}^{+}(f) \quad \forall x \in\{0,1\}^{n} \quad c_{\emptyset \emptyset} \leq f(x) .
$$

Proof.

- By definition, we have, for all $x \in\{0,1\}^{n}$,

$$
\begin{aligned}
f(x) & =\sum_{m=0}^{d} \sum_{\left(K^{1}, K^{0}\right) \in K_{n m}^{+}} c_{K^{1} K^{0}} \prod_{j \in K^{1}} x_{j} \prod_{j^{\prime} \in K^{0}}\left(1-x_{j}^{\prime}\right) \\
& =c_{\emptyset \emptyset}+\sum_{m=1}^{d} \sum_{\left(K^{1}, K^{0}\right) \in K_{n m}^{+}} c_{K^{1} K^{0}} \prod_{j \in K^{1}} x_{j} \prod_{j^{\prime} \in K^{0}}\left(1-x_{j}^{\prime}\right)
\end{aligned}
$$

and all coefficients $c_{K^{1} K^{0}}$ in the second sum are non-negative.

- Therefore, the second sum is non-negative.
- Thus,

$$
\forall x \in\{0,1\}^{n} \quad f(x) \geq c_{\emptyset \emptyset} .
$$

Definition 9
For any posiform $c: J \rightarrow \mathbb{R}$, a pair (S, y) such that $S \subseteq\{1, \ldots, n\}$ and $y: S \rightarrow\{0,1\}$ is called a contractor of c iff

$$
\begin{align*}
& \forall\left(J^{1}, J^{0}\right) \in J \quad\left(J^{1} \cap S=\emptyset \quad \wedge \quad J^{0} \cap S=\emptyset\right) \\
& \vee\left(\exists j \in J^{1} \cap S \quad y_{j}=0\right) \\
& \vee\left(\exists j \in J^{0} \cap S\right. \tag{13}\\
&\left.y_{j}=1\right) .
\end{align*}
$$

Lemma 5

For any $n \in \mathbb{N}$, any $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, any posiform $c \in C_{n n}^{+}(f)$, any contractor (S, y) of c and $t_{S, y}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ such that

$$
\forall x \in\{0,1\}^{n} \quad \forall j \in\{1, \ldots, n\} \quad\left(t_{S, y}(x)\right)_{j}= \begin{cases}y_{j} & \text { if } j \in S \tag{14}\\ x_{j} & \text { otherwise }\end{cases}
$$

holds

$$
\begin{equation*}
\forall x \in\{0,1\}^{n} \quad f\left(t_{S, y}(x)\right) \leq f(x) . \tag{15}
\end{equation*}
$$

Corollary 2 (weak persistency)

$$
\begin{equation*}
\hat{x} \in \underset{x \in\{0,1\}^{n}}{\operatorname{argmin}} f(x) \Rightarrow t_{S, y}(\hat{x}) \in \underset{x \in\{0,1\}^{n}}{\operatorname{argmin}} f(x) \tag{16}
\end{equation*}
$$

Proof of Lemma 5.

- Let $J^{\bar{S}}:=\left\{\left(J^{1}, J^{0}\right) \in J_{n n}^{+} \mid J^{1} \cap S=J^{0} \cap S=\emptyset\right\}$ and $J^{S}:=J-J^{\bar{S}}$.
- By definition,

$$
\begin{aligned}
\forall x \in\{0,1\}^{n} \quad f(x)= & \underbrace{\sum_{\left(J^{1}, J^{0}\right) \in J^{S}} c_{J^{1} J^{0}} \prod_{j \in J^{1}} x_{j} \prod_{j^{\prime} \in J^{0}}\left(1-x_{j}^{\prime}\right)}_{=: f^{S}(x)} \\
& +\underbrace{\sum_{\left(J^{1}, J^{0}\right) \in J^{\bar{S}}} c_{J^{1} J^{0}} \prod_{j \in J^{1}} x_{j} \prod_{j^{\prime} \in J^{0}}\left(1-x_{j}^{\prime}\right)}_{=: f^{\widetilde{S}}(x)} .
\end{aligned}
$$

- Furthermore,

$$
\begin{array}{rlr}
\forall x \in\{0,1\}^{n} & f^{S}\left(t_{S, y}(x)\right) & =0 \\
0 & \leq f^{S}(x) & \text { (by definition) } \\
f^{\bar{S}}\left(t_{S, y}(x)\right) & =f^{\bar{S}}(x) & \text { (because } \left.(\emptyset, \emptyset) \notin J^{S}\right) \\
\text { (by definition) }
\end{array}
$$

Summary

- Every PBF has a posiform
- The posiform of a PBF need not be unique
- For every PBF f and every posiform c of f
- $c_{\emptyset} \emptyset$ is a lower bound on the minimum of f
- weak persistency holds at any contractor of c

For any $n \in \mathbb{N}$, consider n-variate quadratic forms:

- any multi-linear polynomial form $c \in C_{n 2}$ and $f_{c}:\{0,1\}^{2} \rightarrow \mathbb{R}$, i.e., for all $x \in\{0,1\}^{n}$,

$$
f_{c}(x)=c_{\emptyset}+\sum_{j \in\{1, \ldots, n\}} c_{\{j\}} x_{j}+\sum_{\{j, k\} \in(\{1, \ldots, n\})} c_{\{j, k\}} x_{j} x_{k}
$$

- any posiform $c^{\prime} \in C_{n 2}^{+}$and $f_{c}^{\prime}:\{0,1\}^{2} \rightarrow \mathbb{R}$, i.e., for all $x \in\{0,1\}^{n}$,

$$
\begin{aligned}
f_{c^{\prime}}^{\prime}(x)=c_{\emptyset \emptyset}^{\prime} & +\sum_{j \in\{1, \ldots, n\}}\left(c_{\{j\} \emptyset}^{\prime} x_{j}+c_{\emptyset\{j\}}^{\prime}\left(1-x_{j}\right)\right) \\
& +\sum_{\{j, k\} \in\binom{\{1, \ldots, n\}}{2}}\left(c_{\{j, k\} \emptyset}^{\prime} x_{j} x_{k}+c_{\{j\}\{k\}}^{\prime} x_{j}\left(1-x_{k}\right)\right. \\
& \left.\quad+c_{\{k\}\{j\}}^{\prime} x_{k}\left(1-x_{j}\right)+c_{\emptyset\{j, k\}}^{\prime}\left(1-x_{j}\right)\left(1-x_{k}\right)\right)
\end{aligned}
$$

Lemma 6

For any $n \in \mathbb{N}$, any QPBF $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, the $c \in C_{n 2}$ such that $f_{c}=f$ and any $c^{\prime} \in C_{n 2}^{+}(f)$ holds

$$
\begin{gathered}
c_{\emptyset}=c_{\emptyset \emptyset}^{\prime}+\sum_{j=1}^{n} c_{\emptyset\{j\}}^{\prime}+\sum_{\{j, k\} \in\{(1, \ldots, n\}} c_{\emptyset\{j, k\}}^{\prime} \\
\forall j \in\{1, \ldots, n\} \quad c_{\{j\}}=c_{\{j\} \emptyset}^{\prime}-c_{\emptyset\{j\}}^{\prime}+\sum_{k \in\{1, \ldots, n\}-\{j\}}\left(c_{\{j\}\{k\}}^{\prime}-c_{\emptyset\{j, k\}}^{\prime}\right) \\
\forall\{j, k\} \in\binom{\{1, \ldots, n\}}{2} \quad c_{\{j, k\}}=c_{\{j, k\} \emptyset}^{\prime}+c_{\emptyset\{j, k\}}^{\prime}-c_{\{j\}\{k\}}^{\prime}-c_{\{k\}\{j\}}^{\prime}
\end{gathered}
$$

Proof.

- Expansion of the posiform c^{\prime} yields a quadratic multi-linear polynomial form.
- Comparison with c yields the conditions stated in the Lemma.

Definition 10 (Complementation)
For any $n \in \mathbb{N}$ and any QPBF $f:\{0,1\}^{n} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
r_{f}:=\max _{c^{\prime} \in C_{n 2}^{+}(f)} c_{\emptyset \emptyset}^{\prime} \tag{17}
\end{equation*}
$$

is called the floor dual of f.

Lemma 7
For any $n \in \mathbb{N}$ and any QPBF $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, the floor dual can be computed in polynomial time.

Proof. For the multi-linear polynomial form $c \in C_{n 2}$ such that $f_{c}=f, r_{f}$ is the solution of the linear programming problem below (by Lemma 6).

$$
\begin{array}{ll}
\max _{c^{\prime}: J_{n 2}^{+} \rightarrow \mathbb{R}} & c_{\emptyset}-\sum_{j=1}^{n} c_{\emptyset\{j\}}^{\prime}-\sum_{\{j, k\} \in(\underset{\{1, \ldots, n\}}{2})} c_{\emptyset\{j, k\}}^{\prime} \\
\text { subject to } & \forall j \in\{1, \ldots, n\} \quad c_{\{j\}}=c_{\{j\} \emptyset}^{\prime}-c_{\emptyset\{j\}}^{\prime}+\sum_{k \in\{1, \ldots, n\}-\{j\}}\left(c_{\{j\}\{k\}}^{\prime}-c_{\emptyset\{j, k\}}^{\prime}\right) \\
& \forall\{j, k\} \in\binom{\{1, \ldots, n\}}{2} \quad c_{\{j, k\}}=c_{\{j, k\} \emptyset}^{\prime}+c_{\emptyset\{j, k\}}^{\prime}-c_{\{j\}\{k\}}^{\prime}-c_{\{k\}\{j\}}^{\prime} \\
& \forall J \in J_{n 2}^{+}-\{(\emptyset, \emptyset)\} \quad 0 \leq c_{J}^{\prime}
\end{array}
$$

Can the floor dual be computed more efficiently than by an algorithm for general LPs?

Definition 11

For any $n \in \mathbb{N}$ and any $c \in C_{n 2}^{+}$, the network $N=(V, E, s, t, w)$ of c contains the nodes $V=\{s, t, 1, \overline{1}, \ldots, n, \bar{n}\}$ and the weighted edges

$$
\begin{array}{lll}
\text { for any } c_{\{j\} \emptyset}>0 & s \bar{j}, j t & w_{s \bar{j}}:=w_{j t}:=\frac{1}{2} c_{\{j\} \emptyset} \\
\text { for any } c_{\emptyset\{j\}}>0 & s j, \bar{j} t & w_{s j}:=w_{\bar{j} t}:=\frac{1}{2} c_{\emptyset\{j\}} \\
\text { for any } c_{\{j, k\} \emptyset}>0 & j \bar{k}, k \bar{j} & w_{j \bar{k}}:=w_{k \bar{j}}:=\frac{1}{2} c_{\{j, k\} \emptyset} \\
\text { for any } c_{\{j\}\{k\}}>0 & j k, \bar{k} \bar{j} & w_{j k}:=w_{\bar{k} \bar{j}}:=\frac{1}{2} c_{\{j\}\{k\}} \\
\text { for any } c_{\emptyset\{j, k\}}>0 & \bar{j} k, \bar{k} j & w_{\bar{j} k}:=w_{\bar{k} j}:=\frac{1}{2} c_{\emptyset\{j, k\}}
\end{array}
$$

