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Definition 1
For any n ∈ N, any d ∈ {0, . . . , n}, let

Jnd :=
d⋃

m=0

({1, . . . , n}
d

)
Cnd := RJnd (1)

and call any c ∈ Cnd an n-variate multi-linear polynomial form of degree at most d.

Example. For n = d = 2, we have

J22 =
2⋃

m=0

({1, 2}
m

)
=
({1, 2}

0

)
∪
({1, 2}

1

)
∪
({1, 2}

2

)
= {∅} ∪ {{1}, {2}} ∪ {{1, 2}}
= {∅, {1}, {2}, {1, 2}}



Definition 2
For any n ∈ N, any d ∈ {0, . . . , n} and any c ∈ Cnd, fc : {0, 1}n → R such that

∀x ∈ {0, 1}n : fc(x) :=
d∑

m=0

∑
J∈

(
{1,...,n}

m

)cJ
∏
j∈J

xj (2)

is called the PBF defined by c.

Example. For any c ∈ C22, fc : {0, 1}2 → R is such that

∀x ∈ {0, 1}2 : fc(x1, x2) = c∅ + c{1}x1 + c{2}x2 + c{1,2}x1x2 .



Lemma 1
Every PBF has a unique multi-linear polynomial form. More precisely,

∀n ∈ N ∀f : {0, 1}n → R ∃1c ∈ Cnn f = fc . (3)

Example. For n = d = 2 and any f : {0, 1}2 → R, the existence of a c ∈ C22 such
that f = fc means

∀x ∈ {0, 1}2 f(x1, x2) = c∅ + c{1}x1 + c{2}x2 + c{1,2}x1x2 .

Explicitly,

f(0, 0) = c∅

f(1, 0) = c∅ + c{1}

f(0, 1) = c∅ + c{2}

f(1, 1) = c∅ + c{1} + c{2} + c{1,2} .

In this example, a suitable c exists and is defined uniquely by f .



Proof.

▶ For any J ⊆ {1, . . . , n}, let xJ ∈ {0, 1}n such that

∀j ∈ {1, . . . , n} : xJ
j =

{
1 if j ∈ J

0 otherwise
.

▶ Now,

∀x ∈ {0, 1}n : f(x) =
∑

J⊆{1,...,n}
cJ
∏
j∈J

xj

is written equivalently as

f(x∅) = c∅

∀J ̸= ∅ : f(xJ ) = cJ +
∑
J′⊂J

cJ′ .

▶ Thus, c is defined uniquely (by induction over the cardinality of J).



Definition 3
For any n ∈ N and any d ∈ {0, . . . , n}, let

Fnd := {f : {0, 1}n → R | ∃c ∈ Cnd : f = fc} (4)

and call any f ∈ Fnd an n-variate PBF of degree at most d.

In addition, call any f ∈ Fn2 a quadratic PBF (QPBF).

Note. For any n ∈ N, Fnn is the set of all n-variate PBFs (by Lemma 1).



▶ Pseudo-Boolean Optimization (PBO): Given n ∈ N and f : {0, 1}n → R,

min
x∈{0,1}n

f(x) . (5)

▶ Quadratic Pseudo-Boolean Optimization (QPBO): Given n ∈ N and f ∈ Fn2,

min
x∈{0,1}n

f(x) . (6)

▶ Is QPBO less complex than PBO?



Definition 4
For any n ∈ N and any c ∈ Cnn, define the size of c as

size(c) :=
∑

J⊆{1,...,n}: cJ ̸=0

|J | . (7)



Lemma 2
For any x, y, z ∈ {0, 1}:

z = xy ⇔ xy − 2xz − 2yz + 3z = 0 , (8)

z ̸= xy ⇔ xy − 2xz − 2yz + 3z > 0 . (9)

Proof. By verifying equivalence for all eight cases.



Algorithm 1 (Boros and Hammer 2001)

Input: c ∈ Cnn

Output: c′ ∈ Cn2

M := 1 + 2
∑

J⊆{1,...,n} |cJ |
m := n
cm := c
while there exists a J ⊆ {1, . . . , n} such that |J | > 2 and cmJ ̸= 0

Choose j, k ∈ J such that j ̸= k
cm+1 := cm

cm+1
{j,k} := cm+1

{j,k} +M

cm+1
{j,m+1} := −2M

cm+1
{k,m+1} := −2M

cm+1
{m+1} := 3M

for all {j, k} ⊆ J ′ ⊆ {1, . . . , n} such that cm+1
J′ ̸= 0

cm+1
J′−{j,k}∪{m+1} := cm+1

J′

cm+1
J′ := 0

m := m+ 1
c′ := cm



Theorem 1

▶ Algorithm 1 terminates in polynomial time in size(c).

▶ size(c′) is polynomially bounded by size(c).

▶ The multi-linear quadratic form c′ is such that ∀x̂ ∈ Rn:

x̂ ∈ argmin
x∈{0,1}n

fc(x)

⇒ ∃x̂′ ∈ {0, 1}m
(
x̂′
{1,...,n} = x̂{1,...,n} ∧ x̂′ ∈ argmin

x′∈{0,1}m
fc′ (x

′)

)
. (10)



Proof.
▶ The algorithm replaces the occurrence of xjxk by xm+1 and adds the form

M(xjxk − 2xjxm+1 − 2xkxm+1 + 3xm+1).
▶ If xm+1 = xjxk,

f
m+1

(x1, . . . , xm+1) = f
m
(x1, . . . , xn) ≤ max

x′∈{0,1}n
f
m
(x

′
) < M/2 .

▶ If xm+1 ̸= xjxk,

f
m+1

(x1, . . . , xm+1) ≥ M/2

(by Lemma 2 and by definition of M).

▶ For every iteration m,

|{J ⊆ {1, . . . , n}||J | > 2 ∧ cm+1
J ̸= 0}| < |{J ⊆ {1, . . . , n}||J | > 2 ∧ cmJ ̸= 0}|

which proves the complexity claims.



Summary

▶ Every PBF has a unique multi-linear polynomial form.

▶ PBO is polynomially reducible to QPBO.



Definition 5
For any n ∈ N and any d ∈ {0, . . . , n}, let

K+
nd := {(K1,K0)|K1,K0 ⊆ {1, . . . , n} ∧K1 ∩K0 = ∅ ∧ |K1|+ |K0| = d}

J+
nd :=

d⋃
m=0

K+
nm

C+
nd := {c : J+

nd → R | ∀j ∈ J+
nd \ {(∅, ∅)} : 0 ≤ cj}

and call any c ∈ C+
nd an n-variate posiform of degree at most d.

Example. For n = d = 2,

J+
22 = { (∅, ∅) }

∪ { ({1}, ∅), (∅, {1}), ({2}, ∅), (∅, {2}) }
∪ { ({1, 2}, ∅), ({1}, {2}), ({2}, {1}), (∅, {1, 2}) }



Definition 6
For any n ∈ N, any d ∈ {0, . . . , n} and any c ∈ C+

nd, fc : {0, 1}n → R such that

∀x ∈ {0, 1}n fc(x) :=
∑

(J1,J0)∈J+
nd

cJ1J0

∏
j∈J1

xj

∏
j′∈J0

(1− x′
j) (11)

is called the PBF defined by c.

Example. For any c ∈ C+
22, fc : {0, 1}2 → R is such that ∀x ∈ {0, 1}2:

f(x) = c∅∅

+ c{1}∅x1 + c∅{1}(1− x1) + c{2}∅x2 + c∅{2}(1− x2)

+ c{1,2}∅x1x2 + c{1}{2}x1(1− x2) + c{2}{1}(1− x1)x2

+ c∅{1,2}(1− x1)(1− x2) .



Definition 7
For any n ∈ N and any f : {0, 1}n → R, the posiform defined by

∀x ∈ {0, 1}n : K1
x := {j ∈ {1, . . . , n}|xj = 1}

K0
x := {j ∈ {1, . . . , n}|xj = 0}

and

J := {(∅, ∅)} ∪
⋃

x∈{0,1}n
{(K1

x,K
0
x)}

and c : J → R such that

c∅∅ := min
x∈{0,1}n

f(x)

∀x ∈ {0, 1}n cK1
xK0

x
:= f(x)− c∅∅

is called min-term posiform of f .



Lemma 3
For any n ∈ N and any f : {0, 1}n → R, the min-term posiform c of f holds fc = f .

Corollary 1

For any n ∈ N and any f : {0, 1}n → R, there exists a posiform c ∈ C+
nn such that

fc = f .



Proof of Lemma 3.

▶ Let n ∈ N and f : {0, 1}n → R. Moreover, let c : J → R the min-term posiform
of f .

▶ c is a posiform (by definition).

▶ Let g : {0, 1}n → R be the PBF defined by this posiform.

▶ Then, for any x ∈ {0, 1}n,

(J1, J0) ∈ {(∅, ∅), (K1
x,K

0
x)} ⊆ J

are the only elements of J for which

0 ̸=
∏

j∈J1

xj

∏
j′∈J0

(1− x′
j) = 1 .

▶ Thus,

∀x ∈ {0, 1}n g(x) = c∅∅ + cK1
xK0

x

= c∅∅ + f(x)− c∅∅ (by definition of c)

= f(x) .



Note. Unlike multi-linear polynomial forms, posiforms of PBFs need not be unique,
e.g., x1 = x1x2 + x1(1− x2).

Definition 8
For any n ∈ N, any f : {0, 1}n → R and any d ∈ {0, . . . , n}, let

C+
nd(f) :=

{
c ∈ C+

nd | fc = f
}

. (12)

Note. For any n ∈ N and any f : {0, 1}n → R, C+
nn(f) contains at least the min-term

posiform of f .



Lemma 4

∀n ∈ N ∀f : {0, 1}n → R ∀c ∈ C+
nn(f) ∀x ∈ {0, 1}n c∅∅ ≤ f(x) .



Proof.

▶ By definition, we have, for all x ∈ {0, 1}n,

f(x) =
d∑

m=0

∑
(K1,K0)∈K+

nm

cK1K0

∏
j∈K1

xj

∏
j′∈K0

(1− x′
j)

= c∅∅ +
d∑

m=1

∑
(K1,K0)∈K+

nm

cK1K0

∏
j∈K1

xj

∏
j′∈K0

(1− x′
j) ,

and all coefficients cK1K0 in the second sum are non-negative.

▶ Therefore, the second sum is non-negative.

▶ Thus,

∀x ∈ {0, 1}n f(x) ≥ c∅∅ .



Definition 9
For any posiform c : J → R, a pair (S, y) such that S ⊆ {1, . . . , n} and y : S → {0, 1}
is called a contractor of c iff

∀(J1, J0) ∈ J (J1 ∩ S = ∅ ∧ J0 ∩ S = ∅)

∨ (∃j ∈ J1 ∩ S yj = 0)

∨ (∃j ∈ J0 ∩ S yj = 1) . (13)



Lemma 5
For any n ∈ N, any f : {0, 1}n → R, any posiform c ∈ C+

nn(f), any contractor (S, y)
of c and tS,y : {0, 1}n → {0, 1}n such that

∀x ∈ {0, 1}n ∀j ∈ {1, . . . , n} (tS,y(x))j =

{
yj if j ∈ S

xj otherwise
(14)

holds

∀x ∈ {0, 1}n f(tS,y(x)) ≤ f(x) . (15)

Corollary 2 (weak persistency)

x̂ ∈ argmin
x∈{0,1}n

f(x) ⇒ tS,y(x̂) ∈ argmin
x∈{0,1}n

f(x) (16)



Proof of Lemma 5.

▶ Let J S̄ := {(J1, J0) ∈ J+
nn | J1 ∩ S = J0 ∩ S = ∅} and JS := J − J S̄ .

▶ By definition,

∀x ∈ {0, 1}n f(x) =
∑

(J1,J0)∈JS

cJ1J0

∏
j∈J1

xj

∏
j′∈J0

(1− x′
j)

︸ ︷︷ ︸
=:fS(x)

+
∑

(J1,J0)∈JS̄

cJ1J0

∏
j∈J1

xj

∏
j′∈J0

(1− x′
j)

︸ ︷︷ ︸
=:f S̄(x)

.

▶ Furthermore,

∀x ∈ {0, 1}n fS(tS,y(x)) = 0 (by definition)

0 ≤ fS(x) (because (∅, ∅) ̸∈ JS)

f S̄(tS,y(x)) = f S̄(x) (by definition)



Summary

▶ Every PBF has a posiform

▶ The posiform of a PBF need not be unique
▶ For every PBF f and every posiform c of f

▶ c∅∅ is a lower bound on the minimum of f
▶ weak persistency holds at any contractor of c



For any n ∈ N, consider n-variate quadratic forms:

▶ any multi-linear polynomial form c ∈ Cn2 and fc : {0, 1}2 → R, i.e., for all
x ∈ {0, 1}n,

fc(x) = c∅ +
∑

j∈{1,...,n}
c{j}xj +

∑
{j,k}∈

(
{1,...,n}

2

) c{j,k}xjxk

▶ any posiform c′ ∈ C+
n2 and f ′

c : {0, 1}2 → R, i.e., for all x ∈ {0, 1}n,

f ′
c′ (x) = c′∅∅ +

∑
j∈{1,...,n}

(
c′{j}∅xj + c′∅{j}(1− xj)

)
+

∑
{j,k}∈

(
{1,...,n}

2

)
(
c′{j,k}∅xjxk + c′{j}{k}xj(1− xk)

+ c′{k}{j}xk(1− xj) + c′∅{j,k}(1− xj)(1− xk)
)



Lemma 6
For any n ∈ N, any QPBF f : {0, 1}n → R, the c ∈ Cn2 such that fc = f and any
c′ ∈ C+

n2(f) holds

c∅ = c′∅∅ +
n∑

j=1

c′∅{j} +
∑

{j,k}∈
(
{1,...,n}

2

) c′∅{j,k}

∀j ∈ {1, . . . , n} c{j} = c′{j}∅ − c′∅{j} +
∑

k∈{1,...,n}−{j}

(
c′{j}{k} − c′∅{j,k}

)
∀{j, k} ∈

({1, . . . , n}
2

)
c{j,k} = c′{j,k}∅ + c′∅{j,k} − c′{j}{k} − c′{k}{j}



Proof.

▶ Expansion of the posiform c′ yields a quadratic multi-linear polynomial form.

▶ Comparison with c yields the conditions stated in the Lemma.



Definition 10 (Complementation)

For any n ∈ N and any QPBF f : {0, 1}n → R,

rf := max
c′∈C+

n2(f)

c′∅∅ (17)

is called the floor dual of f .



Lemma 7
For any n ∈ N and any QPBF f : {0, 1}n → R, the floor dual can be computed in
polynomial time.



Proof. For the multi-linear polynomial form c ∈ Cn2 such that fc = f , rf is the
solution of the linear programming problem below (by Lemma 6).

max
c′:J+

n2→R
c∅ −

n∑
j=1

c′∅{j} −
∑

{j,k}∈
(
{1,...,n}

2

) c′∅{j,k}

subject to ∀j ∈ {1, . . . , n} c{j} = c′{j}∅ − c′∅{j} +
∑

k∈{1,...,n}−{j}

(
c′{j}{k} − c′∅{j,k}

)
∀{j, k} ∈

({1, . . . , n}
2

)
c{j,k} = c′{j,k}∅ + c′∅{j,k} − c′{j}{k} − c′{k}{j}

∀J ∈ J+
n2 − {(∅, ∅)} 0 ≤ c′J .



Can the floor dual be computed more efficiently than by an algorithm for general LPs?



Definition 11
For any n ∈ N and any c ∈ C+

n2, the network N = (V,E, s, t, w) of c contains the
nodes V = {s, t, 1, 1̄, . . . , n, n̄} and the weighted edges

for any c{j}∅ > 0 sj̄, jt wsj̄ := wjt :=
1
2
c{j}∅

for any c∅{j} > 0 sj, j̄t wsj := wj̄t :=
1
2
c∅{j}

for any c{j,k}∅ > 0 jk̄, kj̄ wjk̄ := wkj̄ := 1
2
c{j,k}∅

for any c{j}{k} > 0 jk, k̄j̄ wjk := wk̄j̄ := 1
2
c{j}{k}

for any c∅{j,k} > 0 j̄k, k̄j wj̄k := wk̄j := 1
2
c∅{j,k}

s

j

k

j̄

k̄

t


